
Bilkent University
Department of Computer Engineering

Senior Design Project
T2308

Perfent

Analysis and Requirement Report

21901631, Beste Güney, beste.guney@ug.bilkent.edu.tr
21802838, Bora Çün, bora.cun@ug.bilkent.edu.tr

21903474, Cemal Faruk Güney, faruk.guney@ug.bilkent.edu.tr
21801831, Çağrı Eren, cagri.eren@ug.bilkent.edu.tr

21902461, Gamze Elif Çenesiz, elif.cenesiz@ug.bilkent.edu.tr
Supervisor: Cevdet Aykanat

Course Instructors: Erhan Dolak, Tağmaç Topal

13.11.2022

This report is submitted to the Department of Computer Engineering of Bilkent University in partial
fulfilment of the requirements of the Senior Design Project course CS491/2.

Contents

1 Introduction 4

2 Current System 4

3 Proposed System 5

3.1 Overview 5

3.1.1 Groups 5

3.1.2 Schedules 6

3.1.3 Events and Recommendation 7

3.1.4 User Matching 8

3.2 Functional Requirements 8

3.2.1 Event Functionalities 8

3.2.2 Group Functionalities 9

3.2.3 Schedule Functionalities 9

3.2.4 User Matching Functionalities 10

3.2.5 Basic Features 10

3.2.6 Other Low-Priority Functionalities 10

3.3 Non-functional Requirements 11

3.3.1 Maintainability 11

3.3.2 Availability 11

3.3.3 Usability 11

3.3.4 Safety 11

3.3.5 Scalability 12

3.3.6 Performance 12

3.3.7 Portability 12

3.4 Pseudo Requirements 12

3.5 System Models 13

3.5.1 Scenarios 13
2

3.5.1.1 Group Operations 13

3.5.1.2 Event Operations 25

3.5.1.3 Schedule Operations 33

3.5.2 Use-Case Model 52

3.5.3 Object and Class Model 56

3.5.4 Dynamic Models 59

3.5.4.1 Activity Diagrams 59

3.5.4.2 State Diagrams 62

3.5.4.3 Sequence Diagrams 62

3.5.5 User Interface 63

4 Other Analysis Elements 74

4.1 Consideration of Various Factors in Engineering Design 74

4.2 Risks and Alternatives 75

4.3 Project Plan 80

4.4 Ensuring Proper Teamwork 102

4.5 Ethics and Professional Responsibilities 103

4.6 Planning for New Knowledge and Learning Strategies 103

4.6.1 Acquiring Knowledge for Implementing Web Server 103

4.6.2 Acquiring Knowledge for Implementing Frontend 104

4.6.3 Acquiring Knowledge for Implementing Web Scraper 104

4.6.4 Acquiring Knowledge for Implementing Recommendation System
105

4.6.5 Acquiring Knowledge for Setting Up AWS Server 106

5 Glossary 107

6 References 108

3

Analysis and Requirements Report
Perfent

1 Introduction

Hanging out and going to activities with one's friends, family, or any
group can be an excellent way to spend time and create memories. People
generally want to attend events together with others whom they wish to spend
time with. These events should be interesting to them and that are a
reasonable fit for their schedule. For example, if one suggests an event to
their friend group that their friends are passionate about and that covers a
reasonable free time slot on their friend’s schedule, most people would be
happy to join such an event with their friends.

When it comes to organizing, several problems emerge such as none
of the group members taking the initiative to organize, finding a proper time
available for everyone, the tiresome activity of researching and choosing an
event among countless websites, and finding an event that the group
members will be interested in. These problems may cause them to waste a
huge amount of time scheduling and browsing events on the internet to find
an event that will be the best fit for the group. In addition, people can also
miss an event that they would otherwise prefer to go to since they were not
aware of that event. Perfent aims to bring solutions to these problems and
transform the organization process into a more autonomous and personalized
experience for groups.

An algorithm will be developed in order to detect the joint available
slots of the group member and events that occur at that slot will be suggested
to the group taking into consideration their previous choices and preferences.
To do so, a recommendation system that uses collaborative filtering will be
developed and it will be applied for both groups and individuals separately.
Events will be taken from several different websites by web-scraping and will
be combined together.

2 Current System

There are other applications that are based on events and event
recommendations; some of the most known are Meetup [1] and Eventbrite [2].
Meetup is about communities hosting events in themselves and other users
joining these communities and joining the events that are hosted by those
communities. Eventbrite is about users browsing local events, creating
events, and buying tickets for those events. There are also other similar
applications such as AllEvents[3], Unation [4], TickPick [5], Gametime [6],

4

TicketMaster [7], and StubHub [8] where users can browse events and buy
tickets for them although type of the events focused by these applications
differ from one another. For example, Gametime [6] focuses on sport game
based events while Unation [4] focuses on all types of events.

The fundamental difference between Perfent and these applications is
that Perfent focuses on the event experience of groups of people rather than
individuals and most of its feature set is around supporting groups having the
best experience at easily planning a group outing for an event they will be
interested in and attending the event. Although it borrows some best practice
features such as event browsing, personal recommendations, group finding
and ticket buying (although it is low priority for us) from the applications
mentioned above.

Nowadays, when a group of people (family members, friends,
acquaintances etc.) are interested in attending an event with their group; they
are left with the complex problem of functioning and handling the event
process as a group of people. Other applications mentioned above cannot
offer much help because inherently the process of going to an event with a
group vastly differs compared to going to an event as an individual. When a
group of people are involved, the event process includes decision making,
communicating the ideas and needs, considering interests of all group
members and considering real life constraints of all group members such as
time, money, location etc. Different from the other applications in the field
Perfent offers solutions for this aspect of the event attending process.

3 Proposed System

3.1 Overview

Perfent will be a web-based application that recommends events to
attend to groups of people. In this subsection, an overview of the features are
categorized and explained.

3.1.1 Groups

After signing in to Perfent, the users will be able to be parts of one or
more groups. The group system will be very similar to that of Whatsapp’s
group system [9].The users will be able to either create a group or join an
existing one with invites. There can be one or more admins that have access
to special operations such as sending invites and removing members.

The users are able to join more than one group and they can “switch”
between the groups so that they can see events and data that is related to
that “current group.”

5

The main reason a group is created is to find the best events to attend
to with that group. According to the group’s collective interests and their time
availability along with some customized parameters that the group sets; a set
of events will be presented to each group. Alternatively, the group can browse
a list of all events, even if those events are not related to the group. If the
group is interested in one of these presented or other events, they can attend
that event. Detailed information about choosing an event will be explained in
the following subsections.

Other than the already existing events, the group can create custom
events that they can go to. In a sense, the group uses Perfent as a meeting
planner in this case. Since they can see the free time slots of the group, it is
easier to plan an internal event.

As an additional feature, the group members will be able to create
“notes” and attach them to events of their choice. The notes are a general
purpose feature and the members can use these for whatever they want
about the event they are going to. One specific use of these notes is to assign
which group members should bring which items that are needed in the event.
For example, if a group is going camping, some equipment must be brought
and the notes are an easy way of reminding the group members who should
bring what.

As another additional feature, each group will have their own private
feed where they can post photos, videos, and comments from an event they
went to together. This provides a nice way of collecting memories of the times
spent together and an incentive to go to more events to make their feed
larger.

3.1.2 Schedules

Schedules in Perfent help the group determine their common free
times. Each person has a dedicated schedule for each of their groups. Using
these individual schedules, Perfent creates a “group schedule.” This group
schedule shows the times that all the group members are available. The
group schedules provide a nice way of visualizing the availability and they are
also used to filter the recommended events, so that all the members can go to
the recommended events.

As mentioned before, the individuals have a different schedule for each
of their groups. The difference in these schedules is based on people having
different availability for different groups. For example, a user’s lunch break
times may be available for a work group, but it cannot be for the groups where
the user has to travel a long way.

In the early iterations of Perfent, the users will only be able to create
schedules using Google Calendar [10]. In the later stages, Perfent’s own
schedule interface will be implemented. Alternatively, people will be able to
import calendars from different popular third-party services in the later stages.

6

If a time period in a user’s schedule is free, but the user does not want
to attend an event at that time; they can set that time period as “busy” directly
from Perfent without changing their calendar in a third-party calendar.
Similarly, they can set a time period as “available” if that time period is actually
not available.

3.1.3 Events and Recommendation

Perfent will gather a variety of events from popular event and ticket
sites using web scraping. These events will be processed and categorized
automatically. Then, based on the groups’ and individuals’ past event
preferences and their clickstream data, new events will be recommended to
the groups. These recommended events will take the group members’
availability, price, distance, age, and similar preferences into account. The
system will periodically recommend events to the groups.

The users do not have to wait for the system’s recommendations, they
can browse all the upcoming events and make suggestions to their groups as
well. In Perfent’s terminology, this is called “proposing an event.” By using
various sorting and filtering options, the users can find suitable events easily.

The events that are recommended by the system or proposed by the
group members can be viewed in a list. In this list, the group members can
indicate their opinions by agreeing, disagreeing, or staying neutral with each
event. Perfent assumes that each group already has a platform for verbal
discussion and does not complicate the implementation process by including
a group chat feature. The agreeing and disagreeing provides a handy
visualization for the group members which allows them to understand what
the rest of the group wants. Of course, this process does not compel the
group to attend that event. This is just for understanding the group’s stance on
the events.

If there are more than one event that the group converges on, but they
can only choose one due to time constraints or other external reasons; the
members can call a vote between two or more of these events that the group
wants to go to. Using the result of the vote as a kind of a tiebreaker, the group
can decide which event to attend. Again, the group does not have to attend
the winning event, this is just a tool to ease the decision process.

Using features mentioned above and understanding their stance on
attending the event, the group can choose to attend an event. Then, they can
mark the event as ”will-be-attended” indicating that they will attend the event.
By doing so, the group can use the event attending capabilities of the Perfent.

In the early stages, a ticket buying or event reservation system will not
be implemented for events found from the internet. However, to make things
easier, Perfent will redirect the users to secure third-party services where they
can perform these actions.

The users can add events and event artists to their wishlist. This helps
improve the recommendation accuracy and the users can get notified about

7

the upcoming events and event artists from their wishlists. Another feature
that helps the recommendation algorithm and other users is that the users can
rate the events. Similar to this, all the events will have an option where the
users can choose to see more or less like that event. Aside from the rating
data, clickstream data will be collected and processed to get an idea of which
events draw the users attention. When recommending, the event ratings will
be more dominant in the recommendation choice. However, we expect a
scarcity in this type of data and consequently decided to include clickstream
data to help.

3.1.4 User Matching

As an additional feature, Perfent helps the users find new people to
attend events with. This is an optional feature and all the users are opted out
by default. If a user opts in for this feature, Perfent presents a list of other
users with similar interests and events so that the user can meet with one or
more of these people to attend relevant events. This feature is especially
useful for those who want to attend a particular type of event, but have no one
they know that wants to go to that type of event. With this feature, they can
find people in similar situations.

3.2 Functional Requirements

3.2.1 Event Functionalities

● When a new user joins the system, the system will present an optional
questionnaire (normal questions, ask previously joined events, present
them with some events, and ask which ones they would attend) to
gather user preferences.

● The users can mark the events with “show more/less like this” options
to provide feedback to the recommendation algorithm.

● The users can browse all the upcoming and past events with filtering,
sorting and search functionalities.

● The users can browse the events suggested to their currently chosen
group.

● The users can browse the events suggested to themselves only
(independent from any groups).

● The users and groups can add constraints to their suggestion algorithm
such as price, age, time, number of minimum available members, etc.

● The users can add events and event artists to their “Wishlist” and their
groups’ “Wishlists” to receive notifications and improve suggestion
accuracy.

● The users can rate events and post comments about them to improve
suggestion accuracy as well as to help other users decide if the event
is a recurring event.

● The system will notify the events that are the best fit for the group
periodically.

8

3.2.2 Group Functionalities

● The users can create groups.
● The users can join already existing groups via invitations.
● The group members can view basic information about their groups

such as name, members, creation date etc.
● The group members can propose events to their groups.
● The group admins can invite other users to their group.
● The group admin can remove members from their group.
● The group admin can make other group members group admins.
● The groups can view the events they have attended.
● The users can switch between their “group views” so that they can see

what events are suggested to their currently chosen group.
● The groups can organize internal group activities.
● Groups can add important notes to the events they plan to attend,

recommended events by the system and proposed events by the
users.

● The group member can vote among events if the members wish to
choose one of many agreed events.

● The group members can leave the groups they want.
● The group members can optionally agree or disagree to events

proposed by the group members or recommended by the system.
● After a group has agreed to attend an event on the system, they can

create a list of required items that will be brought to the event.
● Groups can assign group members to the items indicating who should

bring which item.
● Item bringers will get notifications from the system so that they don't

forget the items.
● Groups can have a private group feed where they can share photos

and videos.
● The users and groups can mark events as attended.

3.2.3 Schedule Functionalities

● The users and groups can have a schedule view that shows events in
the free slots.

● The users can mark the schedule cells as occupied and add activities
to their schedules.

● The users can import an already existing schedule from third-party
applications.

● The users can synchronize their schedules if the third-party schedule is
updated.

9

● The group members can view the proposed events by other group
members and recommended events by the Perfent both on the time
slots on the calendar and in a different section (e.g. notifications).

● The users can indicate between which dates they will not be available
to join events so as not to disrupt the recommendation algorithm.
Between the specified dates, the user will be “invisible” to the system.

● Similarly, the uses can indicate if they are available in a time period
even if their third-party schedule says they are busy. These
functionalities can be thought of as “overriding” the imported
schedules.

● The users can hide the activities in their schedules from other users. If
they decide to do so, they will not be able to see the activities of other
users.

3.2.4 User Matching Functionalities

● If the user opts in, the system will include the user in a user-matching
algorithm. With this functionality, if the user wants to meet other people
to go to an event with, the system will help them find those people.

● After attending an event users can evaluate the system-recommended
users they have gone to an event with as system feedback, the
evaluation will not be shown to any users.

● Users can report the system-recommended users that they have gone
to events with.

● Support team can review the reports and take appropriate action.
● Users can view the past users they have attended events with.
● Users can block users from getting recommended to them.

3.2.5 Basic Features

● The users can have a profile page where other users and they can
view information about the user such as name, surname, email etc.

● The users can edit some information about them such as email,
password etc.

● The user can mute notifications coming from the system.

3.2.6 Other Low-Priority Functionalities

● The users can anonymously post photos and videos from the events
they go to so that the viewers can have an idea of what the events are
like (They might be curious about what they missed or the event might
be a recurring event).

● Groups can have an event feed where they can post pictures from the
event. Later these pictures can be shown in the group feed as well.

● The “support staff” can verify event runner accounts and check user
reports.

10

● Event runners can create new events by providing all the necessary
event information such as description, price, venue information, etc.

● Event runners can cancel the events they created by notifying the ticket
holders and refunding the money.

● The users can buy tickets for the event they are attending as a
group/solo (Only applicable to events created in Perfent).

● Event runners can request an “event runner” role from the support staff
by uploading evidence to the system that shows that they are capable
of organizing events.

● After a group has agreed to attend an event, group members can get
recommendations for the least time-consuming ways to reach the
event location.

● The users can combine their imported schedules if there are multiple.

3.3 Non-functional Requirements

3.3.1 Maintainability

The application will have the necessary documentation and tools set up
to enhance maintainability which is the ease of modifying a component or a
system to correct faults and improve performance or other attributes [11]. To
satisfy such needs our application will use the following metrics and target a
maximum of 5% code duplication threshold, a minimum of 80% unit test
coverage, and a maximum cyclomatic complexity of 20 for each unit [12].

3.3.2 Availability

The application will be available for most of the time of its lifetime. Our
application will aim for a minimum availability of 99% during its lifetime. Most
services on the internet fall between 99% and 100% of availability and our
application targets to be like one of those services at the bare minimum [13].

3.3.3 Usability

The user interface of the application should be easy to manage, simple
to use, and usable. It will ensure that all of the pages of the user interface can
be understood at a reasonable level and traversed in a maximum of 1 minute.

3.3.4 Safety

Any private personal information entered into the system by the user
such as interests or addresses will not be disclosed to the public and will be
safeguarded by the servers.

Passwords entered into the system will be hashed with effective
hashing algorithms that further protect them [14].

11

The application will have the necessary features to ensure that users
are going to hazard-free events with hazard-free users.

3.3.5 Scalability

Our servers should be able to scale when it is necessary and handle
the requests incoming from 5,000 concurrent users seamlessly and without
any repercussions to the users using the website and the availability of any of
Perfent’s functionality. It should be able to load-balance the coming traffic
when the traffic gets heavy since not managed traffic can cause lags in the
system and lag can be a determinant factor in losing a customer [15].

3.3.6 Performance

The application will satisfy the user’s waiting time expectations and
prevent users from bouncing off our website. The application will target a
2-second loading time threshold with a 6-7% bounce rate for the initial (entry)
loading of the website [16]. Then, for each loading of the other pages, it will
target the 1-second loading time with a 6-7% bounce rate [16]. Finally, for
other actions of the user in the user interface that do not include server
interactions, it will target the maximum action time of 100ms.

3.3.7 Portability

The website will also be portable when viewed from devices that are
not computers such as mobile devices. All of the features that operate when
the website opens from a computer will also operate and will be easy to use
when it is opened from a device that is not a computer. This is important
because as of August 2022 53.74% of all internet traffic is coming from mobile
devices instead of computers [17].

3.4 Pseudo Requirements

● The program will be a web application.
● The application will follow a client-server architecture. While the client

side will create a platform for users to interact with the application, the
server side will consist of three different modules.

○ The first module will scrap the web and process the data to
collect data related to events for the application.

○ The second module will apply machine learning algorithms to
create recommendations

○ The third module will be the web server to create the connection
to the client side of the application.

● The project will be developed using Git version control system. Github
will be used as the version control platform.

● The server side of the application will run on AWS platform.
● As being developed on the web, the application needs to be highly

responsive and user friendly. Because of the fact that the application

12

will have different modules, they need to be integrated and interact with
each other fast.

● For user friendliness, the application should have a clear and
visually-appealing user interface.

● The web interface should be responsive to the device resolutions. In
other words, when users enter the website from their mobile devices or
smaller size screens, the application should regulate the interface
accordingly.

● The application should be dynamic. To keep track of the changing
schedules of the users and the updated events, it needs to fetch data
regularly. These data fetching intervals should be determined delicately
to avoid overloading the application.

● To test the plausibility of the recommendation system, synthetic data
needs to be generated so that even before having registered users in
the system, the application behavior can be observed.

● The application should be available in English and Turkish.

3.5 System Models

3.5.1 Scenarios

3.5.1.1 Group Operations

Use case name Invite Users to Groups

Participating Actor Group Admin

Flow of Events 1) Group admin opens the group tab that
he/she wishes to invite somebody.

2) Group admin enters the email of the
person he/she wishes to invite.

3) Group admin clicks the send button to
send the invitation.

Entry condition Group admin needs to be logged in.

Group admin needs to be the member of the
group that he/she is inviting somebody into.

Exit condition Group admin sees the invitation sent prompt.

13

Use case name User Joins Groups

Participating Actor User

Flow of Events 1) User opens notifications.
2) User views the invitation requests.
3) User accepts the invitation and joins

the invited group.

Entry condition User needs to be signed in.

User must not be the group member of the
group he/she accepts to join.

Exit condition User sees the “joined to the group” prompt.

Use case name Leaves Groups

Participating Actor Group Member

Flow of Events 1) Group member opens the page of the
group they wish to leave.

2) Group member clicks the leave the
group button in the group page.

Entry condition Group member needs to be signed in.

Group member needs to be the group
member of the group he/she is going to
leave.

Exit condition Group member sees the “left the group''

14

prompt and is redirected to another page.

Use case name Remove Members From the Group

Participating Actor Group Admin

Flow of Events 1) Group admin opens the page of the
group.

2) Group admin clicks the tab where
group members are shown.

3) Group admin clicks the remove
member button near the group
member that he/she wishes to
remove from the group.

Entry condition Group admin needs to be logged in.

Group admin needs to be the admin of the
group he/she removes the member.

Exit condition Group admin sees the group member is
removed from the group prompt.

Use case name User Creates Groups

Participating Actor User

Flow of Events 1) A pop-up for group creation is
displayed.

2) User enters information for the group
such as group name.

3) Users can invite other users to the
group.

15

4) User clicks the create button.

Entry condition User needs to be logged in.

Exit condition User sees the group created prompt.

Use case name Make Members Group Admin

Participating Actor Group Admin

Flow of Events 1) Group admin opens the page of the
group.

2) Group admin clicks the tab where
group members are shown.

3) Group admin clicks the make group
admin button near to the group
member that he/she wishes to make
the group admin.

Entry condition Group admin needs to be logged in.

Group admin needs to be the admin of the
group he/she makes the members admin.

Exit condition Group admin sees the group member is
given the group admin role prompt.

Use case name View Basic Group Information (Name,
creation date, members etc.)

Participating Actor Group Member

16

Flow of Events 1) Group member opens the group’s
page.

2) Group member views the group
information.

Entry condition Group member needs to be logged in.

Group member needs to be the member of
the group that he/she is viewing.

Exit condition Group member closes the group’s page.

Use case name Propose an Event to the Group

Participating Actor Group Member

Flow of Events 1) Group member opens the page of the
event that he/she wants to propose to
his/her group.

2) Group member clicks the “propose
event” button.

3) Group member chooses the group
that he/she will propose the event to.

4) Group member clicks the submit
button for a proposition to appear for
the group.

Entry condition Group member needs to be logged in.

Group member needs to be the member of
the group that he/she is proposing an event
to.

Exit condition Group member sees the “event proposed”
prompt.

Use case name View Proposed Events

17

Participating Actor Group Member

Flow of Events 1) Group member opens the tab that
shows proposed events of the group.

2) Group member views the proposed
events by the other group members.

Entry condition Group member needs to be logged in.

Group member needs to open the page of a
group who he/she is a member of.

Exit condition Group member views the proposed events
and closes the tab that shows the proposed
events.

Use case name Edit Suggestion Preferences for Groups and
User

Participating Actor User

Flow of Events 1) User enters the profile page or the
group’s recommendations page.

2) Under the recommendations tab, the
user changes the constraints (price,
time interval, distance, rating etc..)

3) User presses the save button at the
end of the page.

Entry condition User needs to be registered and signed in.

Exit condition User clicks on the save button and goes
back to the profile page.

18

Use case name Add Notes to the
Proposed/Recommended/Will be Attended
Events

Participating Actor Group Member

Flow of Events 1) Group member clicks the proposed,
recommended or will be attended
events of the group to open its details.

2) Group the member clicks the add
notes button.

3) Group member writes the notes
he/she wishes to write.

4) The group member clicks the save
button to save the written notes.

Entry condition The group member needs to be signed in.

Group member needs to be the member of
the group that he/she is writing notes on the
event of.

Exit condition Group member sees the note saved prompt.

Use case name Vote Among Agreed Events

Participating Actor Group Member

Flow of Events 1) The group members or the application
suggests events to the group.

2) The group member enters the group
page.

3) The Group Member views the
suggestions.

4) For each suggestion, group member
click on either agree or disagree
button.

5) The system confirms if the group
member is certain from its vote.

6) The system accepts the vote after

19

confirmation; if it does not the group
member votes again.

Entry condition User needs to be signed in and a member of
a group.

Exit condition The user vote is taken by the system.

Use case name View Attended Events

Participating Actor Group Member

Flow of Events 1) Group member opens the group’s
page.

2) The group member clicks the
attended events tab.

3) The group member views the
attended events.

Entry condition The group member needs to be logged in.

Group member needs to be the member of
the group that he/she is viewing the attended
events of.

Exit condition The group member closes the tab that
shows attended events.

Use case name Add Event Artists to Group Wishlist

Participating Actor Group Member

Flow of Events 1) The group member clicks the event
page of the events when he/she is
browsing proposed, recommended
events or events at the browse page.

20

2) The group member clicks the add to
wishlist button that is near the event
artist’s name.

Entry condition The group member needs to be signed in.

Group member needs to be the member of
the group that he/she is modifying the
wishlist of.

Exit condition The group member sees the event artist
added to the wishlist prompt.

Use case name BrowseEvents

Participating Actor User

Flow of Events 1) User enters the events view tab or
clicks on the details for the event
suggested to them.

2) After viewing, the user switches back
to a different page.

Entry condition User needs to be signed in.

Exit condition User switches to a different tab.

Use case name Add Events to Group Wishlist

Participating Actor Group Member

Flow of Events 1) The group member clicks the event
page of the events when he/she is
browsing proposed, recommended
events or events at the browse page.

2) Group member clicks the add to

21

wishlist button that is near the event’s
name.

Entry condition The group member needs to be signed in.

Group member needs to be the member of
the group that he/she is modifying the
wishlist of.

Exit condition The group member sees the event added to
the wishlist prompt.

Use case name View the Group Feed

Participating Actor Group Member

Flow of Events 1) The group member clicks the group
feed’s tab button.

2) The group member views the feed of
the group.

Entry condition The group member needs to be logged in.

Group member needs to be the member of
the group that he/she is viewing the feed of.

Exit condition The group member closes the group feed.

Use case name Post on Group Feed

Participating Actor Group Member

Flow of Events 1) The group member clicks the group
feed’s tab button.

2) The group member clicks the button
that lets them pick a photo or a video

22

from their device.
3) The group member chooses a photo

or a video from their device.
4) The group member clicks the send

button sending their chosen photo or
a video.

Entry condition The group member needs to be signed in.

The group member needs to be the member
of the group that he/she is sending a video
or a photo.

Exit condition Group member sees their photo or a video
posted on group

Use case name Agree/Disagree Proposed and
Recommended Events

Participating Actor Group Member

Flow of Events 1) The group member clicks the tab
button that shows the proposed and
recommended events.

2) The group member clicks the agree or
disagree button that is shown on each
proposed and recommended event.

Entry condition The group member needs to be signed in.

Group member needs to be the member of
the group that he/she agrees or disagrees
with the proposed and recommended event.

Exit condition The group member sees the confirmation
prompt of their agreement or disagreement
of the proposed and recommended event.

23

Use case name Receive and View Notifications for Best Fit
Group Event Recommendations Periodically

Participating Actor Group Member

Flow of Events 1) The group member opens the
notification channel where
notifications arrive.

2) The group member views the
notification.

Entry condition The group member needs to be the member
of the group that the recommendation is
arriving to.

The group member needs to allow
notifications from the Perfent.

Exit condition Group member closes the notification after
viewing it.

Use case name Decide on Attending an Event

Participating Actor Group Member

Flow of Events 1) The group member opens the event’s
page.

2) The group member clicks the attend
button indicating that their group will
attend that event.

Entry condition The group member needs to be signed in.

The group member needs to be the member
of the group that he/she is accepting for
his/her group that they will attend the event.

Exit condition Group member sees the “event will be
attended” prompt.

24

Use case name Organize Internal Group Activities

Participating Actor Group Member

Flow of Events 1) The group member opens the group’s
page.

2) The group member clicks the
organize internal activity button.

3) The group member enters the
necessary information for creating an
activity (name, time etc.).

4) The group member clicks the submit
button to create the activity.

Entry condition The group member needs to be logged in.

The group member needs to be the member
of the group that he/she is creating an
activity in.

Exit condition The group member sees the activity created
prompt.

3.5.1.2 Event Operations

Use case name Search Events

Participating Actor User

Flow of Events 1) User clicks on the search bar
2) User types keyword(s) to find the

desired event(s)
3) The desired event(s) is displayed on

the page

Entry condition User opens “Events” page

25

Exit condition User leaves the page

Use case name Filter Browsed Events

Participating Actor User

Flow of Events 1) User clicks on the filter button
2) User selects the filter options of price,

time interval, distance, rating etc.
3) User clicks the apply button.
4) The filtered events are displayed on

the page.

Entry condition User opens the “Events” page.

Exit condition User browses the filtered events.

Use case name Sorts Browsed Events

Participating Actor User

Flow of Events 1) User clicks on the sort button.
2) User selects the sort option from

price, time interval, distance, rating
etc.

3) User selects between ascending and
descending.

4) User clicks the apply button.
5) The events are displayed according to

26

the new sorting logic

Entry condition User opens the “Events” page.

Exit condition User browses the sorted events.

Use case name BrowseEvents

Participating Actor User

Flow of Events
1) User enters the events view tab or

clicks on the details for the event
suggested to them.

Entry condition User opens the “Events” page.

Exit condition User switches to a different tab.

Use case name User Adds Event Artists to Wishlist

Participating Actor User

Flow of Events 1) User clicks on the add to wishlist
button near the name of the event artist

2) The event artists is added to user’s
wishlist

3) User receives notifications for event
artist’s new events

27

Entry condition User is viewing an event that he/she wishes
to enter in the future.

Exit condition User receives the “event artist added to the
wishlist” prompt.

Use case name Add Events to Wishlist

Participating Actor User

Flow of Events
1) User clicks the event page of the

events when he/she is browsing
proposed, recommended events or
events at the browse page.

2) User clicks the add to wishlist button
that is near the event’s name.

Entry condition User needs to be signed in.

Exit condition User sees the event added to the
wishlist prompt.

Use case name View Notifications for the Event Wishlist

Participating Actor User

Flow of Events 1) An event at the wishlist’s date is
approaching or an event artist at the wishlist
posts a new event.

2) Perfent sends the notification to the
user.

3) User views the notification.

Entry condition The user needs to have the event or event
artist that notification is sent for in their

28

wishlist.

The user needs to allow notifications.

Exit condition User closes the notification.

Use case name Fill Event Questionnaire

Participating Actor User

Flow of Events 1) User joins the Perfent application.
2) Perfent offers users to fill an event

questionnaire to improve recommendations.

or

1) User opens the profile page.
2) User clicks the fill event questionnaire

button.
3) User fills questions asked in the

questionnaire (tick the interested event
types, would you join this event questions).

4) User submits the questionnaire.

Entry condition User needs to be signed in.

Exit condition User receives the questionnaire submitted
prompt.

Use case name Mark Events as Show More Similar Events
or Show Less Similar Event

Participating Actor User

Flow of Events 1) User sees an event while using
Perfent.

2) User marks the event as “show more

29

similar events” or “show less similar events”.

Entry condition User needs to be signed in.

Exit condition User receives the event marked prompt.

Use case name Browse Group Recommended Events

Participating Actor Group Member

Flow of Events 1) Group member opens the group’s
page.

2) The group member opens the
recommended events page.

3) The group member views and
browses the recommended events to
the group.

4) Optionally if the group member wants
he/she can view the interest rates of
the other group members and how
many of the group members are
available during the recommended
event’s time.

Entry condition The group member needs to be signed in.

The group member needs to be the member
of the group that he/she is viewing the
recommendations of.

Exit condition The group member closes the
recommended events tab.

Use case name Buy Tickets for the Created Events

Participating Actor Group Member, Payment Services Provider

30

Flow of Events 1) Group member opens the page of the
event that is created by the event runner.

2) Group member clicks the buy tickets
button.

3) Group member enters the users who
he/she is buying a ticket for.

4) Group member enters the credit card
information and other necessary information
doing a purchase online.

5) Group member clicks the confirmation
button.

6) Payment services provider performs
the money transaction.

7) Event runner receives the money paid
by the group member.

Entry condition Group member needs to be signed in.

Exit condition Group member receives the confirmation of
the tickets bought for the event.

Confirmation mail sent to every user group
member’s mail has bought a ticket for.

Use case name Cancel Created Events

Participating Actor Event Runner, Payment Service Provider

Flow of Events 1) Event runner views the event created
by them.

2) Event runner enters the event detail
page.

3) Event runner clicks on cancel button.
4) Event runner confirms cancellation by

accepting confirmation popup.
5) Event is removed from the Perfent.
6) System notifies the users about event

cancellation.
7) Payment service provider ensures

that ticket buyers get their money
back.

31

Entry condition Event runner is signed in and the creator of
the event.

Exit condition Event runner confirms cancellation and is
redirected to the event view page.

Use case name View Created Events

Participating Actor Event Runner

Flow of Events 1) Even runner opens his/her profile
page.

2) Event runner clicks the created
events tab.

3) Event runner views the created
events and information about the event.
(Basic event information + bought tickets
etc.)

Entry condition Event runner needs to be signed in.

Event runner needs to be the creator of the
events he/she is viewing.

Exit condition Event runner closes the created events tab.

Use case name Create Event

Participating Actor Event Runner

Flow of Events 1) Event runner clicks on create tab to
switch to create page.

2) Event runner fills in information
related to the event (name, price,
etc.).

3) Event runner selects an optional

32

group to propose the event to.
4) Event runner clicks on save button to

save the event or clicks on cancel
button to discard.

Entry condition Event runner needs to be signed in.

Exit condition Event runner saves the event to is redirected
to the events page.

3.5.1.3 Schedule Operations

Use case name Indicate Between Which Dates They Are Not
Available

Participating Actor User

Flow of Events 1) User clicks on Schedule page
2) User clicks on Indicate Unavailable

Dates
3) A pop-up is shown to the user
4) User selects start date and end date
5) User will not get notify for the events

during the interval

Entry condition User needs to be signed in

User must have an imported schedule

Exit condition User successfully selects the interval and
closes the pop-up

Use case name Hide Schedule Information from Other Users

Participating Actor User

33

Flow of Events 1) User clicks on Schedule page
2) User clicks on a cell in the schedule
3) A pop-up menu for cell settings is

displayed to the user
4) User selects hide information
5) Information related to the cell is no

more displayed to other users

Entry condition User needs to be signed in

User must have an imported schedule

Exit condition The information of the selected cell is hidden
from other users

Use case name Mark Occupied or Available Slots in the
Schedule

Participating Actor User

Flow of Events 1) User clicks on Schedule page
2) User clicks on a cell in the schedule
3) A pop-up menu for cell settings is

displayed to the user
4) User selects Mark as Occupied or

Available
5) The slot is displayed as Occupied or

Available

Entry condition User needs to be signed in

User must have an imported schedule

Selected slot shouldn’t overlap with the
user’s attending events

34

Exit condition The slot is shown as occupied or available in
the User’s schedule

Use case name View Slots that Attended Events Occupy in
the Schedule

Participating Actor User

Flow of Events 1) User clicks on Schedule page
2) User clicks on Attended Events
3) The schedule with the user’s

previously attended events is shown
to the user

Entry condition User must be signed in

User must have an imported schedule

Exit condition The previously attended events are shown

Use case name View the Time Slots the Proposed and
Recommended Events Occupy in the Group
Schedule

Participating Actor Group Member

Flow of Events 1) Group Member clicks on Schedule
page

2) Group Member clicks on Group
Schedule

35

3) Group Member selects the relevant
group

4) Group Member clicks on Proposed
and Recommended Events

5) The group’s combined schedule with
proposed and recommended events is
shown to the user

Entry condition Group member needs to be signed in

Group member must have a group with a
valid combined schedule

Exit condition The schedule with proposed and
recommended events is shown to the user

Use case name View Combined Group Schedule

Participating Actor Group Member

Flow of Events 1) Group Member clicks on Schedule
page

2) Group Member clicks on Group
Schedule

3) Group Member selects the relevant
group

4) The group’s combined schedule is
shown to the user

Entry condition Group member needs to be signed in

Group member must have a group with a
valid combined schedule

Exit condition The combined group schedule is shown to
the user

36

Use case name Combine Imported Schedules

Participating Actor User

Flow of Events 1) User clicks on Schedule page
2) User clicks on combine with another

schedule
3) Schedule import pop-up is shown to

the user
4) User imports a new schedule
5) Schedules are combined and shown

in the page

Entry condition User must be signed in

User must have a schedule in the system

Exit condition The combined schedule is shown to the user

Use case name Synchronize Schedule with Third Party
Applications

Participating Actor User, Schedule Services Provider

Flow of Events 1) User Clicks on Schedule page
2) User clicks on Synchronize button
3) The User's Schedule is updated

according to the imported schedule
with the services of schedule services
provider.

Entry condition User needs to be signed in

Exit condition The schedule is successfully updated OR

37

Imported calendar is no longer available

Use case name Import Schedule From Third Party
Applications

Participating Actor User

Flow of Events 1) User clicks on Schedule page
2) User clicks Import Schedule button
3) A pop-up is displayed to the user
4) User selects a site from the displayed

options in which they have their
schedule is stored

5) User’s schedule is imported from the
website of their choice.

Entry condition User needs to be signed in

Exit condition User successfully imports the calendar and
is redirected to the schedule page.

3.5.1.4 General Operations

Use case name Request to Create an Event Runner Account

Participating Actor Event Runner

Flow of Events 1) Event runner clicks the create event
runner account button.

2) Event runner enters the necessary
information to create an event runner
account. (This might include id, organized
past events and evidence that shows past
events are organized by the person)

3) Event runner clicks the submit button
to submit the application.

Entry condition Event runner needs to open the Perfent site.

38

Exit condition The event runner receives the confirmation
of their application sent to Perfent systems.

Use case name Verify Event Runner Accounts

Participating Actor Perfent Support

Flow of Events 1) Perfent support clicks the tab that
they can see event runner account creation
requests.

2) Perfent support clicks a request to
see its details.

3) Perfent support evaluates the
information post at event runner account
request.

4) Perfent support verifies the event
runner account request.

Entry condition Perfent support needs to be signed in.

Exit condition Perfent support receives the event runner
account verified prompt.

Use case name Block Notifications From the Application

Participating Actor User

Flow of Events 1) User opens the profile page.
2) User clicks the “turn off notifications”

button.

Entry condition User needs to be signed in.

Exit condition User receives the notifications turned off
prompt.

39

Use case name User Edits Profile

Participating Actor User

Flow of Events 1) User clicks “Edit Profile” button
2) A pop-up for editing is displayed to

the user
3) User changes the information
4) The necessary process for changing

the particular information is performed by the
site.

Entry condition User is logged in.

User opens Profile page.

Exit condition User receives the “your profile is
successfully edited” prompt.

Use case name User Registration

Participating Actor User

Flow of Events 1) User enters required information

2) User chooses a password

3) User clicks register button

Entry condition User opens the registration page.

40

User doesn’t have another account logged
in.

Exit condition Event runner receives the confirmation of
their application sent to Perfent systems.

Use case name User Login

Participating Actor User

Flow of Events 1) User enters a valid username or email
and password.

2) User is navigated to the home page.

Entry condition User is not already logged in

User opens login page

Exit condition User successfully logs in OR

User navigates to another page OR

User closes registration page

Use case name View Profile

Participating Actor User

41

Flow of Events 1) User opens profile page
2) The information stored for the profile

is displayed to the user

Entry condition User is logged in

User opens Profile page

Exit condition User navigates to another page OR

User logs out OR

User closes the page

3.5.1.5 User Matching Operations

Use case name Receive User Recommendations For Joining
Events Together

Participating Actor User

Flow of Events 1) User clicks on My Events page
2) User clicks on Upcoming
3) User clicks on Recommended Users
4) Recommended Users for that event

are displayed to the user
5) User either accepts or ignores the

recommendations

Entry condition User must be signed in

User must have a certain upcoming event
that they are going

Exit condition Users group is updated according to their
choice

42

Use case name Allow/Block Yourself from User
Recommendations

Participating Actor User

Flow of Events 1) User clicks on Profile page
2) User clicks on Preferences
3) User selects one of the options, Allow

or Block, from the User
Recommendations Setting

Entry condition User must be signed in

Exit condition User’s profile preferences are successfully
updated

Use case name View Previously Matched Users

Participating Actor User

Flow of Events 1) User clicks on Profile page
2) User clicks on History
3) User clicks on Previously Matched

Users
4) Users that were matched with the user

are displayed to the user

Entry condition User must be signed in

Exit condition Previously matched users are displayed to
the user

Use case name Evaluate Previously Matched Users

Participating Actor User

43

Flow of Events 1) User clicks on Profile page
2) User clicks on History
3) User clicks on Previously Matched

Users
4) Users that were matched with the user

are displayed to the user
5) User clicks Evaluate button near one

of the users
6) A pop-up is displayed in the browser
7) User fills the form in the pop-up
8) User clicks Submit button

Entry condition User must be signed in

User must have previously matched users

Exit condition The evaluation form is submitted to the
database

Use case name Report Matched Users

Participating Actor Event Attendee

Flow of Events 1) Event attendee clicks on Profile page
2) Event attendee clicks on History
3) Event attendee clicks on Previously

Matched Users
4) Users that were matched with the

Event attendee are displayed to the
user

5) Event attendee clicks Report button
near one of the users

6) A pop-up is displayed in the browser
7) Event attendee fills the form in the

pop-up
8) Event attendee clicks Submit button

Entry condition Event Attendee must be signed in

44

Event Attendee must have previously
matched users

Exit condition The report for is submitted to the database

Use case name View Reports

Participating Actor Perfent Support

Flow of Events 1) Perfent support clicks on Reports page
2) The reports are displayed to the

support

Entry condition Perfent support must be signed in

There must be reports in the system

Exit condition The reports are shown to the Perfent Support

Use case name Evaluate Reports

Participating Actor Perfent Support

Flow of Events 1) Perfent support clicks on Reports page
2) The reports are displayed to the

support
3) Perfent support clicks on Evaluate

button near one of the reports
4) A pop-up is displayed to the Perfent

Support
5) Perfent support fills the form
6) Perfent support clicks on Submit button

Entry condition Perfent support must be signed in

There must be reports in the system

45

Exit condition Action is taken by the system depending on
the result of the report

3.5.1.6 Event Attending Operations

Use case name Create a List of Items to Bring

Participating Actor Event Attendee

Flow of Events 1) Event attendee clicks on My Events
2) Event attendee clicks on Upcoming
3) Event attendee’s upcoming events are

shown
4) Event attendee clicks on Create List of

Items
5) A pop-up for creating the list is

displayed
6) Event attendee fills the form in the

pop-up
7) Event attendee clicks Submit

Entry condition Event attendee must be signed in

Event attendee must have an upcoming event

Exit condition The list is submitted for the event

Use case name Assign Group Members to Bring Items

Participating Actor Event Attendee

46

Flow of Events 1) Event attendee clicks on My Events
2) Event attendee clicks on Upcoming
3) Event attendee’s upcoming events are

shown
4) Event attendee clicks on Create List of

Items
5) A pop-up for creating the list is

displayed
6) Event attendee assigns other group

members to bring the items
7) Event attendee clicks Submit

Entry condition Event attendee must be signed in

Event attendee must have an upcoming event

Event attendee must have a group

Exit condition Group members get assigned to bring items

Use case name Receive Notifications About Bringing Items

Participating Actor Event Attendee

Flow of Events 1) Event attendee clicks on My Events
2) Event attendee clicks on Upcoming
3) Event attendee’s upcoming events are

shown
4) Event attendee clicks on Settings

button near an upcoming event
5) Event attendee toggles the setting for

receiving notifications about bringing
items

6) Event attendee clicks Submit

Entry condition Event attendee must be signed in

Event attendee must have an upcoming event

47

Exit condition Event attendee starts or stops getting
notifications for bringing items

Use case name Post Videos and Photos from the Event to the
Group’s that Event’s Feed

Participating Actor Event Attendee

Flow of Events 1) Event attendee clicks on My Events
2) Event attendee clicks on All
3) All events of Event Attendee are

shown
4) Event attendee clicks on Feed button

near an event
5) The feed of the event is shown
6) Event attendee clicks post
7) Event attendee uploads a video or a

photo of their choice
8) Event attendee clicks Submit

Entry condition Event attendee must be signed in

Event attendee must have an event on the list

Exit condition The photo or the video that was uploaded is
shown on the feed of that event

Use case name View the Least Time Consuming Ways to
Reach Event Location

Participating Actor Event Attendee

48

Flow of Events 1) Event attendee clicks on My Events
2) Event attendee clicks on Upcoming
3) Upcoming events of Event attendee

are shown
4) Event attendee clicks on Directions

button near an event
5) A map with directions to event location

are shown to the user

Entry condition Event Attendee must be signed in

Event Attendee must have an upcoming
event

Exit condition The fastest is calculated and shown to the
user

Use case name Mark Events as Attended

Participating Actor Event Attendee

Flow of Events 1) Event attendee clicks on Events
2) The list of Events in the system are

shown to the Event Attendee
3) Event attendee clicks Mark as

Attended button near an event

Entry condition Event Attendee must be signed in

Exit condition The marked event is displayed in Event
Attendee’s My Events page

Use case name Anonymously Post Photos and Videos from
the Event in the Page of the Event

Participating Actor Event Attendee

49

Flow of Events 1) Event attendee clicks on My Events
2) Event attendee clicks on All
3) All events of Event Attendee are

shown
4) Event attendee clicks on Photos

button near an event
5) All photos from the event are

displayed to the event attendee
6) Event attendee clicks Post

Anonymous Picture or Video
7) Event attendee uploads a picture or a

video
8) Event attendee clicks on Submit

button

Entry condition Event attendee must be signed in

Event attendee must have an event

Exit condition The uploaded file is displayed to other users
in the event page

Use case name Rate Events

Participating Actor Event Attendee

Flow of Events 1) Event attendee enters the events
view tab.

2) Event attendee filters for past events
or searches by event name.

3) User finds the event to rate.
4) User clicks on the event and enters

the event detail page.
5) User clicks on the stars icon in this

page and gives the rating.

Entry condition User needs to be signed in and marked the
event as attended.

50

The user needs to ensure the system that
he/she attended to event by marking it as
attended

Exit condition User rating is taken by the system and event
rating is recomputed.

Use case name Comment Events

Participating Actor Event Attendee

Flow of Events 1) Event attendee enters the events
view tab.

2) Event attendee filters for past events
or searches by event name.

3) Event attendee finds the event to
write a comment to.

4) Event attendee clicks on the event
and enters the event detail page.

5) Event attendee clicks on the comment
button.

6) A text box opens to write the views.
7) Event Attendee writes their comments

and clicks publish button.

Entry condition Event attendee needs to be signed in and
marked the event as attended.

Exit condition Event attendee comment is taken by the
system.

51

3.5.2 Use-Case Model

Figure 1: Use case diagram of the Perfent system

52

Figure 2: Use case diagram of user matching operations package

Figure 3: Use case diagram of schedule operations package

53

Figure 4: Use case diagram of event attending operations package

Figure 5: Use case diagram of group operations package

54

Figure 6: Use case diagram of event operations package

55

3.5.3 Object and Class Model

Figure 7: The Object and Class Model of Perfent

The class explanations are as follows:

● User

This class models the registered users of the system.

It has the password, email and name information to authenticate the
user.

Every user has a profile in the system.

● Member

When users join a group, they become the members of that group. A
group can have many members and a member can be part of many groups.

● GroupAdmin

If a user creates a group, it becomes the admin of the group. Every
admin is also a member of the group.

56

● PerfentSupport

PerfentSupport checks the reports of the users and verifies the event
owners.

● AuthenticationController

This controller class registers and removes the users from the system.

This class also checks if the user can enter to the system in other
words if the user information is correct.

● Profile

Every user in the system has a profile where they show their activities
and preferences in the system.

Every user profile has a schedule and a wishlist.

Notifications appear in the profiles.

● Schedule

Every user uses a schedule to keep track of the events and to be able
to get recommendations for their groups.

Every schedule is in the user profiles.

● Profile Controller

This controller class manages the profile actions.

It helps to update, edit profiles, calendars and wishlist

● Group

Groups are the target class of the application whom the
recommendations are created for.

Every group consists of many members.

Every group has related documents for their events.

● GroupController:

This controller class manages to control the groups.

It updates, removes and edits groups.

It consists of a recommender to get the recommendations for the
groups.

57

● Event

Events are the activities that users can browse and attend together.

Events have different attributes such as name, location and category.

Every event can be attended by many users and many users can
attend different events.

Events can be fetched from the web from existing activities or users
can create their own events as well.

● CreatedEvent

These are the events created by individual users.

● Item

These are the materials required by the createdevents.

Every createdEvent can have many items needed and every item gets
assigned to a member.

● FetchedEvent

These are the events that are created by organizations and fetched
from the web.

These events have price information and the link url to go to the actual
website.

● Recommender

This class uses machine learning to create recommendations to the
groups.

If provides the recommendations to the group controller.

● EventController

This class controls the event related operations such as updating and
removing an event.

● WebScraper

This class fetches the events from the web and provides them to the
application.

● Notification

This class represents the information provided to the users regularly to
inform them on the new suggestions at the system.

58

● NotificationController

This class controls the notifications that are sended to the users
regarding the events and other suggestions in the system.

3.5.4 Dynamic Models

3.5.4.1 Activity Diagrams

Figure 8: Activity Diagram showing how a group decides on an event to attend

Figure 9: Activity Diagram showing how the Web Scraper gathers event data

59

Figure 10: Activity diagram of recommendation system process of
recommending

60

Figure 11: Activity diagram of user matching process

61

3.5.4.2 State Diagrams

Figure 12: Event State Diagram

The state diagram shows the states of an event relative to a particular
group. The diagram shown above is slightly simplified to be easy to
understand: In the actual product, there is a transition from each state to the
“Past Event” state if the event starting time passes. Another simplified part is
the following: The diagram shows that an event can be voted only if it is in the
“Proposed Event” state. However, the same transitions between “Proposed
Event” and “Proposed Event to be Voted” should also be between “Agreed
Proposed Event” and “Proposed Event to be Voted” as well as “Disagreed
Proposed Event” and “Proposed Event to be Voted.” The transitions are not
shown but described here as not to complicate the diagram. Another point is
that there can be transitions between “Agreed Proposed Event” and
“Disagreed Proposed Event” depending on the agreed/disagree situation.

3.5.4.3 Sequence Diagrams

Figure 13: Sequence diagram of adding a user to a group

62

Figure 14: Sequence diagram of adding an event to the group wishlist

3.5.5 User Interface

To see User Interfaces use the link.

Figure 15: Perfent Splash Screen

63

https://www.figma.com/file/gl2j75lWE4OAT71CWLsr5B/Untitled?node-id=0%3A1

Figure 16: Perfent Login Screen

Figure 17: Perfent Register Screen

64

Figure 18: Browse Events Page

Figure 19: My Events Page

65

Figure 20: Group Event View

Figure 21: Upcoming Event View

66

Figure 22: Past Event View

Figure 23: Schedule

.

67

Figure 24: Indicate Unavailable Dates Pop-up

Figure 25: Group Recommended & Proposed Events

68

Figure 26: Group Agreed Events

Figure 27: Vote Pop-up

69

Figure 28: Ongoing Votes

Figure 29: Past Votes

70

Figure 30: Group Information Pop-up

Figure 31: Group Feed

71

Figure 32: Group Wishlist

Figure 33: Group Members

72

Figure 34: Profile page

73

Figure 35: Create event page

4 Other Analysis Elements

4.1 Consideration of Various Factors in Engineering Design

In the engineering design of this project, the first consideration was the
modularity of the application. Because of the fact that the application has a
client-server architecture, the modularity between these components are
important for detection of possible issues in terms of maintenance and
portability. Furthermore, modularity is important inside these components as
well. Especially at the server side, modularity is quite significant for project
development because the server side has three different functionalities and to
have an easy development process and to avoid problems in future, modular
architecture will be helpful. Due to the fact that modularity is crucial for the
application, the other main consideration was using technologies which will
help us to easily assemble and disassemble the components. From this
perspective, using Docker is strongly encouraged within the group members.
In addition to that, using technologies which are easy to communicate with is
important as well. To succeed this, Spring and React, which have been used
by developers many times to implement server-client architecture, are
decided to be used. The other consideration in the design was the compliance
with the standards to reduce the risks for future problems. For example, the
standard language for machine learning is python and because of that we

74

have decided to follow this common convention and use Python as the
programming language for the recommendation system of the application.
The last concern on the engineering design was related to high output and
efficiency. To achieve this, we again benefited from modularity. Instead of
performing data fetch and analysis steps directly in the web server, we
decided to split this into further modules. This way,the overload on the server
will be reduced and the client side will get the results in a fast and efficient
manner.

4.2 Risks and Alternatives

As in all projects, there are some initial risks involved. In this section,
these risks are identified, analyzed, and proper management strategies and
alternatives are listed. Each risk is assigned a likelihood between one of “very
low,” “low,” “moderate,” “high,” and “very high.” Other than the likelihood, an
effect on the project (or impact) is assigned. These can be one of
“insignificant,” “tolerable,” “serious,” and “catastrophic.” The risks are listed
below and Table xx summarizes them.

1. The requirements change during the implementation.

● Analysis: Since the software development life-cycle model is the
Waterfall model, the requirements are set in this report and the
likelihood of any change is not very high [18]. However, the
technical domains of machine learning, web scraping and
crawling are new to the Perfent engineering team, which means
that if the engineers are stuck at some point, the requirements
might have to be changed. The probability of this happening is
moderate; therefore, the likelihood of this risk occurring is
initially identified as moderate. The effect (or impact) on the
project actually changes depending on how deep the team is
into the implementation. If the changes occur in the early stages,
the effect is insignificant since there is not much refactoring to
do. However, if the changes occur in the late stages, the effect is
serious since the existing code must be changed to welcome the
new changes. Some components that were prepared to be used
in the altered features may go to waste as well. Overall, the
effect is identified as tolerable, assuming that the parts with
existing code will not be changed too much.

● Strategy: The best strategy is to analyze the requirements
carefully and realistically in this report. But this is a difficult task,
therefore the code must be developed in a way that welcomes
changes. In addition, the requirements should be prioritized
before the development. The features that have higher priorities

75

and are more essential to the core idea should be implemented
before others since these are less likely to change. This way,
new changes will not result in time and/or effort wastes and will
be easier to implement.

2. The implementation time may be underestimated.

● Analysis: Since the engineering team is not very experienced in
the machine learning and web scraping domains, the likelihood
of underestimating the implementation time is high. The effect
on the project is tolerable since this is not an actual contracted
project.

● Strategy: The primary strategy is to research the new
technologies beforehand to get a good idea of their difficulties.
Creating throwaway prototypes to understand how they work
also contributes to the strategy. This will be discussed in the
next risk further. If the risk still occurs after these are done,
some low-priority requirements might be removed from the
project. This last strategy is not preferred, but if there is no other
choice, it must be followed.

3. Tools and third-party services to be used during the implementation
may not integrate well with the project.

● Analysis: The project is not very big in size. Thanks to this, there
will not be specialized tools and services that are difficult to
integrate. The tools and services that are known to be able to be
integrated can be used. For example: Google Calendar is a very
popular calendar service and is known to be integrated to many
projects. GitHub is similar in this sense but it is a tool. This
follows that the likelihood of this risk occurring is low. In the case
that it happens, the effect on the project is serious. If an
important external component cannot be integrated when the
team is deep into the implementation, we would have to look for
alternatives. This would result in a waste of time when the
deadlines are approaching.

● Strategy: For all the external tools and services, the team will
create a throwaway prototype to test how well they can be
integrated. This way, we can understand if a tool or service can
be integrated the way we want. In case one of these prototypes
gives us false positive results, we will have replacement tools
and services at the ready.

4. Technologies that are planned to be used may change.

● Analysis: The technologies that we plan to use such as
development frameworks like React and Spring, our choice of

76

web scraping tool, or the Google Calendar service may undergo
changes that would render our plan outdated. The probability of
such a situation is very low; however, the likes of it are known to
happen. The effect of the risk is catastrophic. The team would
have to refactor or move the entire project to some other
technology.

● Strategy: We plan to avoid this risk by using popular
technologies such as React and Spring. The popular
technologies are less likely to undergo massive changes since
that would affect many other projects. Even if such a case
happens, these technologies do not force the developers to use
the latest version.

5. A competitive product may be published before Perfent is.

● Analysis: As discussed in the previous sections, there is no
group event recommender system similar to Perfent currently.
And since such an idea is not trending on the internet these
days, we believe that the likelihood of this risk occurring is very
low. The effect would be serious since the potential customers
and investors would be drawn to the competitor’s product since
it came out first.

● Strategy: In the case that the risk occurs, we will increase the
amount of marketing and advertisements to get the customers’
attention. In addition, we should identify the weaknesses of the
competitor’s product and implement what they are missing in our
product to draw customers.

6. Engineers are ill or unable to continue working temporarily.

● Analysis: Since the pandemic is not completely over yet and the
development will mostly take place over winter where people are
more vulnerable to both COVID-19 and other milder diseases;
the probability of missing a group member temporarily is
moderate. The effect on the project is serious since the parts
that the missing engineer(s) are responsible for would not be
advancing.

● Strategy: In such a case, the work will be redistributed among
the remaining engineers until those missing are able to come
back. Normally, the lack of knowledge of other engineers’ parts
would be a problem. However, since we assigned at least two
engineers to each part (parts: Front-end, web server, machine
learning, web scraping), even if one member goes missing,
there is at least one other person that is knowledgeable on the
files and the code of the missing person. Thanks to this, a

77

potential redistribution of the tasks would not be a huge
problem.

7. Project management may be insufficient in later stages.

● Analysis: As people work on different parts of the project, the
team communication and management may be weakened in the
later stages. However, since we are a small team with constant
discussions and collaborations, the probability is low. The effect
is tolerable since if the team members notice a weak
communication, they can call for a status meeting.

● Strategy. To avoid this risk, we plan to have weekly status
meetings. In these meetings, we plan to tell our fellow
developers what we accomplished that week, what we will work
on in the next week, and if there are any hindrances that keep
us from moving on; similar to daily Scrums. We will also have
task boards to let the team know our progress asynchronously.

8. The technical knowledge of the engineers may be insufficient.

● Analysis: Since we are all new to machine learning and web
scraping domains, the probability of this risk is high, even with
thorough research on the subjects. The effect on the project is
serious. After all, if we get stuck on a crucial part, we might have
to unwillingly change the requirements, which is a hassle.

● Strategy: Firstly, all the research will be done and small
throwaway prototypes will be built for testing our knowledge. If
there are still some parts that we find ourselves stuck in, we plan
to consult our innovation expert who is very experienced in the
recommendation system domain.

78

Table 1: Summary of the Risk Management Plan

Risk Likelihood Effect on the project Strategy Summary

Requirement changes Moderate Tolerable

Develop the code in a way that allows
flexibility. Prioritize the requirements and
implement the higher-priority features
before others.

Underestimation of the
implementation time High Tolerable

Research the new technologies well
before implementation to get a better
understanding of the duration of tasks.

Tools and other services
not integrating well Low Serious

Create throwaway prototypes to see how
well the tools and services can be
integrated to the project. Look for
alternatives if any component cannot be
integrated.

Technology changes Low Catastrophic Use popular technologies to avoid the risk.

Competitors publishing
products Very low Serious

Increase the amount of marketing and
advertising. Identify the weaknesses of the
competitor and provide what they cannot
in Perfent.

Engineers not able to
work Moderate Serious Redistribute the tasks among the

remaining engineers.

Insufficient project
management Low Tolerable

Call weekly status meetings and use
project management tools such as task
boards.

Insufficient technical
knowledge High Serious Consult the innovation expert if research is

not enough.

79

4.3 Project Plan

This section describes Perfent’s project plan. A work breakdown
structure (WBS) has been created (See Figure 36). We have a hybrid type of
WBS. It is a combination of process-based and product-based WBSs. The top
level is process based: The work is broken down as Specification, Analysis,
Design, Implementation, Final Report. The Implementation process is broken
down in a product-based fashion: Front-end, web server, web scraper, and
event recommender.

Figure 36: The Work Breakdown Structure

For better readability, the left and the right parts of Figure 36 are
presented separately below. The full image can be found in high resolution in
this link.

Figure 37: The left part of the Work Breakdown Structure

80

https://perfent.github.io/perfent-docs/Reports/Figures/Analysis/WorkBreakdownStructure.png

Figure 38: The right part of the Work Breakdown Structure

The work packages are listed in Table 2. The work package numbers
(WP#) refer to the numbers in the WBS above. For each WP, the leader and
the involved members are specified. Note that the leaders are also involved
with the respective package, but their names are excluded from the “Members
involved” lists for simplicity.

Table 2: List of work packages

WP# Work package title Leader Members involved

1.1.1.1 Writing the Introduction and the
Constraints Elif Çenesiz Beste Güney

1.1.2.1 Identifying the Functional Requirements Bora Çün Çağrı Eren, Faruk Güney

1.1.2.2 Identifying the Non-functional
Requirements Çağrı Eren Bora Çün, Faruk Güney

1.2.1.1 Overview Bora Çün

1.2.1.2 Functional Requirements Çağrı Eren Bora Çün

1.2.1.3 Non-functional Requirements Çağrı Eren

1.2.1.4 Pseudo Requirements Beste Güney

81

1.2.2.1 Scenarios and the Use-Case Model Faruk Güney Beste Güney, Çağrı Eren

1.2.2.2 Object and Class Model Beste Güney

1.2.2.3 Dynamic Models Bora Çün Çağrı Eren

1.2.2.4 User Interface Elif Çenesiz Faruk Güney

1.2.3.1 Analysis of Other Elements Beste Güney Bora Çün, Çağrı Eren, Elif
Çenesiz

1.3.1.1 Front-end Development Elif Çenesiz Faruk Güney

1.3.1.2 Web Server Development Beste Güney Çağrı Eren, Bora Çün

1.3.1.3 Web Scraper Bora Çün Faruk Güney

1.3.1.4 Event Recommender Development Çağrı Eren Beste Güney, Elif Çenesiz

1.3.2.1 Integration of Front-end and Web
Server Beste Güney Çağrı Eren, Bora Çün, Elif

Çenesiz, Faruk Güney

1.3.2.2 Integration of Web Server and Web
Scraper Faruk Güney Bora Çün, Beste Güney,

Çağrı Eren

1.3.2.3 Integration of Web Server and Event
Recommender Çağrı Eren Bora Çün, Beste Güney, Elif

Çenesiz

1.3.3.1 Unit Testing Faruk Güney Beste Güney, Elif Çenesiz,
Çağrı Eren, Bora Çün

1.3.3.2 Integration Testing Beste Güney Çağrı Eren

1.3.3.3 System Testing Bora Çün Beste Güney, Çağrı Eren,
Elif Çenesiz, Faruk Güney

1.3.3.4 Acceptance Testing Bora Çün Beste Güney, Çağrı Eren,
Elif Çenesiz, Faruk Güney

1.4.1.1 Design Goals Faruk Güney Beste Güney

1.4.1.2 Proposed Software Architecture Elif Çenesiz Bora Çün, Çağrı Eren

1.4.1.3 Subsystems Faruk Güney Beste Güney

1.4.2.1 Object Design Trade-offs Çağrı Eren

1.4.2.2 Packages Elif Çenesiz Bora Çün, Faruk Güney

82

1.4.2.3 Class Interfaces Beste Güney Çağrı Eren, Elif Çenesiz,
Faruk Güney, Bora Çün

1.5.1 Final Requirements Faruk Güney Bora Çün

1.5.2 Final Design and Architecture Elif Çenesiz Beste Güney

1.5.3 Development and Maintenance Details Çağrı Eren Beste Güney, Faruk Güney

1.5.4 Future Plans and Other Elements Elif Çenesiz Faruk Güney

1.5.5 User Manual Bora Çün Çağrı Eren

The initial estimations for the duration of these work packages are
presented below using a Gantt Chart. The Gantt Chart does not have the
usual “waterfall” shape observed in most Gantt Charts. This is because the
work packages are not ordered in chronological order. They are ordered in the
order they appear in the WBS. Please note that the WP durations are initial
estimates and are subject to change depending on the project status.

83

Figure 39: Project Gantt Chart

The rest of this subsection consists of the WP tables. Each table
explains the content of the WPs in detail. The WP numbers refer to the
numbers in the WBS.

84

WP 1.1.1.1: Writing the Introduction and the Constraints

Start date: 10.10.2022 End date: 16.10.2022

Leader: Elif Çenesiz Members
involved:

Beste Güney

Objectives: An introduction section will be created to introduce the reader
to the Specification Document. Perfent’s aims and the problems it solves
will be explained. The project constraints will be discussed in detail.

Tasks:

Task 1.1.1.1.1 Writing the Introduction: The introduction will be written to
explain Perfent’s aims and the problems it solves.

Task 1.1.1.1.2 Identifying the project’s constraints: The project’s
constraints will be identified and the corresponding document section will
be written.

Deliverables

D1.1.1.1.1 Project Specification Document

WP 1.1.2.1: Identifying the Functional Requirements

Start date: 03.10.2022 End date: 09.10.2022

Leader: Bora Çün Members
involved:

Çağrı Eren, Faruk Güney

Objectives: Identifying the functional requirements of the project.
Categorizing the different functionalities. Completing the relevant
subsection in the document.

Tasks:

Task 1.1.2.1.1 Identify the feature categories: The different categories of
features such as schedule features and event features will be identified.

Task 1.1.2.1.2 Explain the functional requirements: The functional
requirements will be written down. These requirements will be sufficiently
explained.

Task 1.1.2.1.3 Complete the Subsection: The subsection containing the
functional requirements will be completed. The necessary overview texts
will be written.

Deliverables

85

D1.1.2.1.1 Project Specification Document

WP 1.1.2.2: Identifying the Non-functional Requirements

Start date: 10.10.2022 End date: 16.10.2022

Leader: Çağrı Eren Members
involved:

Bora Çün, Faruk Güney

Objectives: Identifying the non-functional requirements of the project.
Categorizing these. Completing the relevant subsection in the document.

Tasks:

Task 1.1.2.2.1 Identify the categories: The different categories of
non-functional requirements such as performance and usability will be
identified.

Task 1.1.2.2.2 Explain the non-functional requirements: The
non-functional requirements will be written down. These requirements will
be sufficiently explained.

Task 1.1.2.2.3 Complete the Subsection: The subsection containing the
non-functional requirements will be completed.

Deliverables

D1.1.2.2.1 Project Specification Document

WP 1.2.1.1: Overview

Start date: 17.10.2022 End date: 30.10.2022

Leader: Bora Çün Members
involved:

Objectives: Providing an overview for the project requirements. Giving the
reader an idea about the project before reading the requirements.
Clarifying the points that are difficult to explain with bullet lists.

Tasks:

Task 1.2.1.1.1 Write the overview text: The overview text will be
structured and written.

Deliverables

86

D1.2.1.1.1 Analysis and Requirement Report

WP 1.2.1.2: Functional Requirements

Start date: 17.10.2022 End date: 30.10.2022

Leader: Çağrı Eren Members
involved:

Bora Çün

Objectives: Moving the functional requirements from the Specification
Document to the Analysis and Requirement Report. Making the necessary
adjustments to the currently existing requirements. Providing a better
readability.

Tasks:

Task 1.2.1.2.1 Move the functional requirements: Move the functional
requirements to the Analysis and Requirement Report.

Task 1.2.1.2.2 Make the necessary adjustments: Make the necessary
adjustments based on supervisor and advisor feedback.

Deliverables

D1.2.1.2.1 Analysis and Requirement Report

WP 1.2.1.3: Non-functional Requirements

Start date: 17.10.2022 End date: 30.10.2022

Leader: Çağrı Eren Members
involved:

Objectives: Moving the non-functional requirements from the Specification
Document to the Analysis and Requirement Report. Making the necessary
adjustments to the currently existing requirements. Providing a better
readability.

Tasks:

Task 1.2.1.3.1 Move the non-functional requirements: Move the
non-functional requirements to the Analysis and Requirement Report.

Task 1.2.1.3.2 Make the necessary adjustments: Make the necessary
adjustments based on supervisor and advisor feedback.

87

Deliverables

D1.2.1.3.1 Analysis and Requirement Report

WP 1.2.1.4: Pseudo Requirements

Start date: 17.10.2022 End date: 30.10.2022

Leader: Beste Güney Members
involved:

Objectives: Moving the implementation constraints from the Specification
Document to the Analysis and Requirement Report. Enhancing the existing
ones with more technical information. Providing a better readability.

Tasks:

Task 1.2.1.4.1 Move the constraints: Move the constraints to the
Analysis and Requirement Report. Convert these to pseudo requirements.

Task 1.2.1.4.2 Enhance the pseudo requirements: Enhancing the
existing requirements with more technical information.

Deliverables

D1.2.1.4.1 Analysis and Requirement Report

WP 1.2.2.1: Scenarios and the Use-Case Model

Start date: 31.10.2022 End date: 06.11.2022

Leader: Faruk Güney Members
involved:

Beste Güney, Çağrı Eren

Objectives: Determining the various scenarios that the users will be in
when using Perfent. Converting the existing functional requirement to use
cases. Identifying the actors involved. Drawing the Use-Case Diagram.

Tasks:

Task 1.2.2.1.1 Determine the scenarios: Determine the various
scenarios that the users will be in when using Perfent.

Task 1.2.2.1.2 Identify the use-cases: Converting the existing functional
requirement to use cases.

88

Task 1.2.2.1.3 Identify the actors: Identify the actors involved in the
use-case diagram.

Task 1.2.2.1.4 Draw the Use-Case Diagram: Draw the Use-Case
Diagram using the use-cases and the actors.

Deliverables

D1.2.2.1.1 Analysis and Requirement Report

WP 1.2.2.2: Object and Class Model

Start date: 31.10.2022 End date: 06.11.2022

Leader: Beste Güney Members
involved:

Objectives: Determining the classes that will be needed in the software.
Identifying the relations between the objects. Completing the Class
Diagram of Perfent software.

Tasks:

Task 1.2.2.2.1 Determine the classes: Determine the classes and the
object relations.

Task 1.2.2.2.2 Draw the Class Diagram: Complete the Class Diagram.

Deliverables

D1.2.2.2.1 Analysis and Requirement Report

WP 1.2.2.3: Dynamic Models

Start date: 31.10.2022 End date: 06.11.2022

Leader: Bora Çün Members
involved:

Çağrı Eren

Objectives: Producing descriptions of some non-trivial processes using
Dynamic Models. These Dynamic Models include State Diagrams, Activity
Diagrams, and Sequence Diagrams.

Tasks:

89

Task 1.2.2.3.1 Identify the processes: The processes where a dynamic
model needs to be drawn will be identified.

Task 1.2.2.3.2 Determine a proper diagram for each process: For each
process that was identified in the previous task, the type of diagram will be
determined.

Task 1.2.2.3.3 Draw the diagrams: The diagrams will be drawn and
explanations will be written.

Deliverables

D1.2.2.3.1 Analysis and Requirement Report

WP 1.2.2.4: User Interface

Start date: 31.10.2022 End date: 13.11.2022

Leader: Elif Çenesiz Members
involved:

Faruk Güney

Objectives: To create visual mock-ups of how Perfent will look like when
the production is over. The UI mock-ups will give the reader a visual
explanation of the app. The outcomes of this WP will act as a guide for the
front-end development.

Tasks:

Task 1.2.2.4.1 Identify the screens to be drawn: Identify the screens to
be drawn in this subsection.

Task 1.2.2.4.2 Draw the screens: The screen mock-ups will be drawn
using Figma [19].

Task 1.2.2.4.3 Explain the UI figures: Each non-trivial screen mock-up
produced will be explained.

Deliverables

D1.2.2.4.1 Analysis and Requirement Report

WP 1.2.3.1: Analysis of Other Elements

Start date: 07.11.2022 End date: 13.11.2022

90

Leader: Beste Güney Members
involved:

Bora Çün, Çağrı Eren, Elif
Çenesiz

Objectives: The rest of the analysis will be explained. After reading the
report, the reader should be informed about Perfent’s consideration of
various factors, risk management strategy, project plan, teamwork,
professional responsibilities, and learning strategies among other things.

Tasks:

Task 1.2.3.1.1 Determine the various factors in engineering design:
The various factors in engineering design will be determined and
explained.

Task 1.2.3.1.2 Analyzing the risks: The initial risks will be analyzed and
proper strategies will be discussed.

Task 1.2.3.1.3 Come up with a project plan: Estimate a realistic project
plan. Create the WBS and explain the WPs. Draw a Gantt Chart to help
visualize.

Task 1.2.3.1.4 Explain the teamwork: Explain how Perfent engineers will
ensure an efficient teamwork.

Task 1.2.3.1.5 Discuss ethics and professional responsibilities:
Discuss ethics and professional responsibilities related to Perfent.

Task 1.2.3.1.6 Explain the learning strategy: Explain how the team
members plan for new knowledge. Discuss the learning strategy.

Deliverables

D1.2.2.4.1 Analysis and Requirement Report

WP 1.3.1.1: Front-end Development

Start date: 14.11.2022 End date: 19.03.2023

Leader: Elif Çenesiz Members
involved:

Faruk Güney

Objectives: To implement the user interface of the application. The UI
should be interacting with the web server. The user experience should be
inline with the requirements.

Tasks:

91

Task 1.3.1.1.1 Set the front-end framework up: The front-end
development environment will be set up.

Task 1.3.1.1.2 Implement the static pages: The static versions of the
pages with no functionalities will be implemented.

Task 1.3.1.1.3 Add functionality to the pages: Add functionality to the
pages to allow the user to interact with the app.

Deliverables

D1.3.1.1.1 Implementation Code

WP 1.3.1.2: Web Server Development

Start date: 14.11.2022 End date: 19.03.2023

Leader: Beste Güney Members
involved:

Çağrı Eren, Bora Çün

Objectives: To implement a backend service that the front-end can send
requests to and receive responses from. The web server must have the
necessary operations to support the front-end. The web server must be
integrated well with both the web scraper and the event recommender app.

Tasks:

Task 1.3.1.2.1 Set the web server framework up: The web server
development environment will be set up.

Task 1.3.1.2.2 Implement the business logic: The business logic of the
application will be implemented.

Task 1.3.1.2.3 Implement the API endpoints: Implement the API
endpoints that the front-end will be interacting with.

Deliverables

D1.3.1.2.1 Implementation Code

WP 1.3.1.3: Web Scraper

Start date: 14.11.2022 End date: 18.12.2022

Leader: Bora Çün Members
involved:

Faruk Güney

92

Objectives: To implement a web scraper application. The web scraper
implemented here will be used to get event data from the internet. This
application should be integrable with the web server.

Tasks:

Task 1.3.1.3.1 Set the web scraper framework up: The web scraper
development environment will be set up.

Task 1.3.1.3.2 Implement the web scraper: The web scraper application
will be implemented.

Task 1.3.1.3.3 Determine the event websites: The event websites from
where the event data will be gathered will be determined.

Deliverables

D1.3.1.3.1 Implementation Code

WP 1.3.1.4: Event Recommender Development

Start date: 09.01.2023 End date: 19.03.2023

Leader: Çağrı Eren Members
involved:

Beste Güney, Elif Çenesiz

Objectives: To implement a machine learning model for recommending
events. The model should recommend events that make sense. The model
should be integrable with the web server.

Tasks:

Task 1.3.1.4.1 Create the model: Create the machine learning model for
recommending events.

Deliverables

D1.3.1.4.1 Implementation Code

WP 1.3.2.1: Integration of Front-end and Web Server

Start date: 19.12.2022 End date: 19.03.2023

Leader: Beste Güney Members
involved:

Çağrı Eren, Bora Çün, Elif
Çenesiz, Faruk Güney

93

Objectives: To have Perfent’s front-end and web server applications
connected to each other. At the end of this activity, the front-end should be
communicating with the web server without problems. The user should not
see any hard coded information from the front-end.

Tasks:

Task 1.3.2.1.1 Connect front-end functionality to web server
endpoints: Send requests to the web server when the front-end needs to
read or write data. Receive requests and behave accordingly.

Deliverables

D1.3.2.1.1 Implementation Code

WP 1.3.2.2: Integration of Web Server and Web Scraper

Start date: 12.12.2022 End date: 01.01.2023

Leader: Faruk Güney Members
involved:

Bora Çün, Beste Güney,
Çağrı Eren

Objectives: To have Perfent’s web scraper and web server applications
connected to each other. At the end of this activity, the web scraper should
be sending the event data it finds to the web server and the database. The
web server should not be creating event data on its own, these should
come from the web scraper.

Tasks:

Task 1.3.2.1.1 Connect the web scraper to the web server: Send
requests to the web server about writing new event data.

Deliverables

D1.3.2.2.1 Implementation Code

WP 1.3.2.3: Integration of Web Server and Event Recommender

Start date: 06.02.2023 End date: 19.03.2023

Leader: Çağrı Eren Members
involved:

Bora Çün, Beste Güney,
Elif Çenesiz

Objectives: To have Perfent’s event recommender and web server
applications connected to each other. At the end of this activity, the web

94

server should be able to reach the event recommendations that are
prepared by the event recommender.

Tasks:

Task 1.3.2.1.1 Connect the event recommender to the web server:
Create a communication channel where web server can reach the event
recommendations of the event recommender.

Deliverables

D1.3.2.3.1 Implementation Code

WP 1.3.3.1: Unit Testing

Start date: 14.11.2022 End date: 19.03.2023

Leader: Faruk Güney Members
involved:

Beste Güney, Elif Çenesiz,
Çağrı Eren, Bora Çün

Objectives: To have all the basic components of the applications tested.
Each unit should be behaving correctly when compared to the functional
requirements. The engineers should not be pushing commits to the
repository without having all the unit tests passing.

Tasks:

Task 1.3.3.1.1 Set the unit testing environment up: A unit test writing
environment should be set up so that the engineers can write and execute
tests.

Task 1.3.3.1.2 Write unit tests for the basic components: Each basic
component should have a unit test written. No code should be pushed
without all the tests passing.

Deliverables

D1.3.3.1.1 Test code

WP 1.3.3.2: Integration Testing

Start date: 12.12.2022 End date: 19.03.2023

Leader: Beste Güney Members
involved:

Çağrı Eren

95

Objectives: To have all the integration activities verified. The components
should be interacting with each other correctly when compared to the
requirements. The engineers should not be pushing integration commits to
the repository without verifying the correctness.

Tasks:

Task 1.3.3.2.1 Set the necessary scaffoldings: The necessary
scaffoldings will be set up to allow testing.

Task 1.3.3.2.2 Verify each integration activity: Test and compare against
the interface specifications

Deliverables

D1.3.3.2.1 Test code

WP 1.3.3.3: System Testing

Start date: 06.03.2023 End date: 09.04.2023

Leader: Bora Çün Members
involved:

Beste Güney, Çağrı Eren,
Elif Çenesiz, Faruk Güney

Objectives: To have the product at hand verified. The entire system
should be tested against the requirements stated in this report. Any
inconsistencies with the requirements should be addressed.

Tasks:

Task 1.3.3.3.1 Test each requirement in the product: Each functional
and non-functional requirement will be tested in the current state of the
product.

Deliverables

D1.3.3.3.1 System Test Report

WP 1.3.3.4: Acceptance Testing

Start date: 10.04.2023 End date: 30.04.2023

Leader: Bora Çün Members
involved:

Beste Güney, Çağrı Eren,
Elif Çenesiz, Faruk Güney

96

Objectives: To have the product at hand validated. The entire system
should be tested for usefulness and user satisfaction.

Tasks:

Task 1.3.3.4.1 Find external users: Find users other than the engineers
to help in the acceptance testing.

Task 1.3.3.4.2 Create test scenarios: Determine some scenarios that the
testers can validate.

Task 1.3.3.4.3 Have the testers validate the product: Ask the testers to
complete the tasks in the scenarios. Ask the testers to roam freely in the
application independent of the scenarios. Ask their opinions on the user
satisfaction.

Deliverables

D1.3.3.4.1 Acceptance Test Document

WP 1.4.1.1: Design Goals

Start date: 30.01.2023 End date: 05.02.2023

Leader: Faruk Güney Members
involved:

Beste Güney

Objectives: To identify the design goals in the software. This section
should contain sufficient explanation for each goal. The reader should be
well-informed after reading.

Tasks:

Task 1.4.1.1.1 Identify the design goals: Identify the design goals of
Perfent.

Deliverables

D1.4.1.1.1 Detailed Design Report

WP 1.4.1.2: Proposed Software Architecture

Start date: 06.02.2023 End date: 12.02.2023

Leader: Elif Çenesiz Members
involved:

Bora Çün, Çağrı Eren

97

Objectives: To determine a software architecture that satisfies the design
goal described in the previous section. The architecture should be inline
with the pseudo requirements stated in this report.

Tasks:

Task 1.4.1.2.1 Identify the best software architecture: Identify the best
software architecture that satisfies the design goals and the pseudo
requirements of Perfent.

Task 1.4.1.2.2 Express the architecture: Express the architecture as a
UML diagram and explain in text.

Deliverables

D1.4.1.2.1 Detailed Design Report

WP 1.4.1.3: Subsystems

Start date: 13.02.2023 End date: 19.02.2023

Leader: Faruk Güney Members
involved:

Beste Güney

Objectives: To identify the necessary subsystems for the development of
Perfent. These subsystems should be consistent with Perfent’s software
architecture.

Tasks:

Task 1.4.1.3.1 Identify the subsystems: Identify the necessary
subsystems for the development of Perfent.

Task 1.4.1.3.2 Express the subsystems: Express the subsystems as a
UML diagram and explain in text.

Deliverables

D1.4.1.3.1 Detailed Design Report

WP 1.4.2.1: Object Design Trade-offs

Start date: 30.01.2023 End date: 05.02.2023

Leader: Çağrı Eren Members
involved:

98

Objectives: To explain the design choices by explaining the trade-offs.
Each trade-off should be identified and explained in detail.

Tasks:

Task 1.4.2.1.1 Identify and explain the trade-offs: Identify and explain
the object design trade-offs.

Deliverables

D1.4.2.1.1 Detailed Design Report

WP 1.4.2.2: Packages

Start date: 13.02.2023 End date: 19.02.2023

Leader: Elif Çenesiz Members
involved:

Bora Çün, Faruk Güney

Objectives: To identify the necessary packages for the development of
Perfent. These packages should be consistent with Perfent’s software
architecture and subsystems.

Tasks:

Task 1.4.2.2.1 Identify the packages: Identify the necessary packages for
the development of Perfent.

Task 1.4.2.2.2 Express the subsystems: Express the packages as a
UML diagram and explain in text.

Deliverables

D1.4.2.2.1 Detailed Design Report

WP 1.4.2.3: Class Interfaces

Start date: 13.02.2023 End date: 19.02.2023

Leader: Beste Güney Members
involved:

Çağrı Eren, Elif Çenesiz,
Faruk Güney, Bora Çün

Objectives: To express the class interfaces as tables. The reader should
be able to understand the interfaces easily.

Tasks:

99

Task 1.4.2.3.1 Convert the class interfaces to tables: Convert and
explain the class interfaces in tables.

Deliverables

D1.4.2.3.1 Detailed Design Report

WP 1.5.1: Final Requirements

Start date: 17.04.2023 End date: 23.04.2023

Leader: Faruk Güney Members
involved:

Bora Çün

Objectives: To present the final versions of the requirements. At this point,
the project must be either completed or very close to completion; which
means that there should not be any requirement changes.

Tasks:

Task 1.5.1.1 List the final versions of the requirements: List the final
versions of the requirements and explain each one.

Deliverables

D1.5.1.1 Final Report

WP 1.5.2: Final Design and Architecture

Start date: 17.04.2023 End date: 23.04.2023

Leader: Elif Çenesiz Members
involved:

Beste Güney

Objectives: To present the final versions of the design and architecture. At
this point, the project must be either completed or very close to completion;
which means that there should not be any design or architecture changes.

Tasks:

Task 1.5.2.1 Present the final versions of the design and architecture:
Present the final versions of the design and architecture in UML and text.

Deliverables

D1.5.2.1 Final Report

100

WP 1.5.3: Development and Maintenance Details

Start date: 24.04.2023 End date: 30.04.2023

Leader: Çağrı Eren Members
involved:

Beste Güney, Faruk Güney

Objectives: To explain how the development was carried out. If there were
any differences with what was stated in this report and what actually
happened, these should be stated and explained. If future maintenance is
to be done, this should be explained in detail.

Tasks:

Task 1.5.3.1 Explain the development: Explain how the development
was carried out.

Task 1.5.3.2 State the differences: State any differences with what was
stated in this report and what actually happened. Explain the reasons for
the changes.

Task 1.5.3.3 Explain future maintenance: If future maintenance is to be
done, this should be explained in detail.

Deliverables

D1.5.3.1 Final Report

WP 1.5.4: Future Plans and Other Elements

Start date: 24.04.2023 End date: 30.04.2023

Leader: Elif Çenesiz Members
involved:

Faruk Güney

Objectives: To inform the reader about Perfent’s future after the CS fair.
To inform the reader about how the analysis elements from this report were
handled throughout the project.

Tasks:

Task 1.5.4.1 Explain the future plans: Explain the future plans.

Task 1.5.3.2 Explain the analysis elements: Explain how the analysis
elements were handled throughout the project.

Deliverables

101

D1.5.4.1 Final Report

WP 1.5.5: User Manual

Start date: 24.04.2023 End date: 30.04.2023

Leader: Bora Çün Members
involved:

Çağrı Eren

Objectives: To produce a user manual for Perfent. The manual should be
easy to understand. It should cover the application comprehensively.
Especially the tester questions from the acceptance testing should be
answered.

Tasks:

Task 1.5.5.1 Write the user manual: Write a comprehensive and easily
understandable user manual for the whole application.

Deliverables

D1.5.5.1 Final Report

4.4 Ensuring Proper Teamwork

Perfent is a team project and the Perfent engineers realize that the
project cannot reach its maximum potential without proper teamwork. To
ensure proper teamwork, we have agreed to take the following measures:

● Equal work distribution: To avoid a potential imbalance in the work
distribution, we will try to distribute the work as equally as possible. If
some members have other external workload, the other members can
take some of that member’s work to help them.

● Weekly Status Meetings: As mentioned in the Risks and Alternatives
section, we plan to have weekly status meetings. In these meetings,
we plan to tell our fellow developers what we accomplished that week,
what we will work on in the next week, and if there are any hindrances
that keep us from moving on; similar to daily Scrums.

● Maintaining a Kanban Board: We plan to have a kanban board which
will be updated as we complete more work [20]. The purpose of this
board is to visualize the completed and remaining work amounts, which
will lead to more motivated team members as well as more
transparency between the team members.

102

● Assigning team members to tasks: To avoid the diffusion of
responsibility, we will assign a team member to each issue and task.

● Code Reviews: To decrease the amount of defective code pushed to
the repository, we will work with pull requests and review code before
merging new code to the main branch. This will also help establish
collective ownership of the code.

4.5 Ethics and Professional Responsibilities

The schedule information provided by the users, or any other
confidential information will not be shared with any third party company unless
the user agrees to share. Sensitive user information such as user passwords
and locations must be stored securely. To achieve this, the data will be
encrypted or hashed before they are uploaded to the database.

The Perfent team wants to work in a positive working environment. To
achieve this, the developers will respect each other, the work will be shared
as evenly as possible, and the developers will be transparent with their
progress during the weekly progress meetings.

A user can report another user in case of an inappropriate situation.

4.6 Planning for New Knowledge and Learning Strategies

Knowledge is the most fundamental part of implementing any project
since any type of implementation requires knowledge to implement the
system. Therefore, implementers of a system need to determine strategies to
learn that knowledge. This situation remains the same for the Perfent as there
are many parts of the project implementers have little pre-existing knowledge
and implementers need to gather knowledge about implementing those parts.
In the following, we will see how Perfent’s implementers acquire knowledge of
the main parts of the project.

4.6.1 Acquiring Knowledge for Implementing Web Server

For the implementation of the Perfent backend web server, the Perfent
team decided to use the Spring Boot framework since the team already has
previous experience using the framework and working with web servers. This
situation removes the process of watching long tutorials to learn how to code
with Spring Boot starting from zero knowledge. Therefore, the Perfent team is
well versed in setting up endpoints, writing business functionality, doing user
authentication, and creating entity objects by using Spring Boot functionalities.

However, during implementation, there will be places where
best-practice approaches need to be researched to implement something or

103

there is a bug that is emerging because the team has lack of knowledge using
Spring Boot. Therefore, to acquire knowledge to solve such issues Perfent
team plan to use Spring documentation [21] and technical forum sites like
StackOverflow [22] and sites that offer technical knowledge like
TutoriolsPoint[23].

4.6.2 Acquiring Knowledge for Implementing Frontend

For the implementation of the Perfent frontend Perfent team decided to
use React since the team already has previous experience using React.
Again this situation removes the process of acquiring knowledge to learn
React from zero knowledge.

However, during implementation, we might use other libraries that we
have not used before which provide functionalities that work in React since
there are lots of useful libraries that work in React. Such libraries generally
have their own respective documentation that can be used to acquire
knowledge about those libraries and learn how the library is used. We plan to
read such documentation when we are using libraries that work in React.

Again, during implementation, there will be places where the best
practice approach needs to be researched to implement something or there is
a bug that is emerging because the team has a lack of knowledge using
React. Therefore, to acquire knowledge to solve such issues Perfent team
plan to use official React documentation [24], technical forum sites like
StackOverflow [22], and sites that offer technical knowledge like TutoriolsPoint
[23].

4.6.3 Acquiring Knowledge for Implementing Web Scraper

The web scraping part of Perfent is the part that the Perfent team has
no pre-existing experience. Therefore, this part requires an excessive amount
of research and knowledge gathering.

First, we plan to research the popular approaches and best practices
that are used in web scraping programs or there might be frameworks that
specialize in web scraping. To discover the existence of such things and
acquire sufficient knowledge we plan to use tutorials on YouTube [25], other
tutorial sites such as TutorialsPoint [23], StackOverflow [22] answers that are
about web scraping’s best practices and most importantly Google Search [26]
engine as discovering as just entering search queries like “Web scraping
frameworks”, “What are the best practices at web scraping”, or “Web scraping
for beginners” are really beneficial for learning the existence of information.

104

Secondly, when we are done with acquiring the knowledge of what
techniques we should use while doing web scraping, we will move on to how
those techniques work and what the best practices for using those techniques
are. To gather such knowledge, we plan to mainly use specific tutorials about
those techniques on YouTube [25] as YouTube tutorials are really nice to learn
things when one has no or limited knowledge. We also plan to use tutorial
sites such as TutoriolsPoint [23] and StackOverflow[22] for acquiring
knowledge about specific areas of that specific technique.

Finally, when we are well versed about what technique to use and how
to use it only implementation remains. During the implementation, we will face
problems where we are not sure of the best practice and there are bugs
emerging because of our lack of knowledge about some specific part of the
technique we are using. To tackle such problems we will mainly use technical
forum sites like StackOverflow [22], sites that offer technical knowledge like
TutoriolsPoint [23], and the official documentation of the technique we are
using if it exists to acquire knowledge.

4.6.4 Acquiring Knowledge for Implementing Recommendation System

The recommendation system of the Perfent is one of the most
important parts of the Perfent and one of the parts that the Perfent team has
limited knowledge of. Therefore, an excessive amount of research about
recommendation systems and machine learning is needed. We have already
acquired knowledge about how to gather user data during our meeting with
the innovation expert since our innovation expert is very knowledgeable about
recommendation systems and machine learning.

First, although one of the team members finished the machine learning
course last semester and one of the team members is taking it right now, as a
team we want to go through a tutorial on how machine learning basics and
recommendations systems work. We mainly plan to use YouTube [25] to
acquire the knowledge for this part since YouTube offers good tutorials for
beginners.

Secondly, we will specifically research the existence of techniques and
libraries that are used in recommendation systems and if we can find
specifically libraries and techniques used for group recommendations instead
of single person recommendations. Luckily for us, our supervisor instructor
and innovation expert have experience working on recommendation systems.
Therefore, our primary resource to acquire knowledge about the existing
techniques and libraries we can use for group and solo recommendations will
be them. We will also use the Google Search engine [26] to acquire
knowledge on the existence of such techniques and libraries. Another very
important resource we will use will be academic research papers as there is

105

countless research about machine learning and recommendation systems
since it is a really popular subject in computer science. Determining
recommendations for a group of people might be niche and we might have a
hard time finding resources in the Google Search engine although there are
research papers about group recommendations. Therefore we will also use
Google Scholar[27] to find and acquire knowledge from research papers.

Thirdly, when we are done with the research of the techniques and
libraries and we have determined what to use, we will move on to acquiring
knowledge about how we can implement such a system using the techniques
and libraries we have determined to use. We will mainly use YouTube [25]
tutorials to acquire knowledge since we will probably have little idea about the
implementation of the technique we are using and YouTube is great for
beginners to learn things. We will also use other websites that might help us
at acquiring the knowledge of how we implement such a system like
TutorialsPoint [23].

Finally, during the implementation stage of the recommendation
systems, we will face problems such as bugs emerging because of our lack of
knowledge about how to implement such a system and we are not sure what
is the best approach to a section we are trying to implement. To tackle such
specific issues we will mainly use technical data science forum sites like Data
Science StackExchange [28] and StackOverflow [22], sites that offer technical
knowledge like TutorialsPoint [23], and the official documentation of the
technique we are using if it exists to acquire knowledge.

4.6.5 Acquiring Knowledge for Setting Up AWS Server

As of writing, this report Perfent’s AWS Server setup is already
finished. Our AWS Server consists of an Amazon Linux EC2 virtual machine
instance with CI/CD pipeline connected to Perfent’s GitHub repositories and
DNS setup connected to the perfent.net domain.

The person who created the Amazon Linux instance already had
pre-existing knowledge about creating an instance at AWS, therefore this part
did not require gathering completely new knowledge but it did require reading
AWS EC2 documentation [29] to gather specific information about specific
parts of the creation process.

Setting up DNS for our AWS EC2 instance and connecting the
perfent.net domain we bought from Google Domains was an area in which we
had no pre-existing knowledge. Therefore, the person who is working on this
part has mainly used AWS documentation about setting up DNS [30] to

106

acquire new knowledge and to acquire knowledge about specific issues
StackOverflow [22] answers about setting up DNS for AWS are used.

The hardest part was setting up the CI/CD pipeline between the AWS
EC2 instance and Perfent Github repositories since this part was not
straightforward as others. Luckily for us, there was a perfect YouTube tutorial
[31] showing the whole process. The person who is creating the pipeline
mainly used this tutorial to gather knowledge about the setup. After using that
resource again related StackOverflow answers [22] are used to acquire
knowledge about specific issues.

5 Glossary

Proposing an event: A group member finds an event and suggests that the
group attend that event.
Event artist: An important person in the event whether events are based on
them or they are an integral part of it like the singer at a concert or the artist of
the art gallery in an art gallery tour event.
Event runner: Event organizer who has registered and opened a user in the
Perfent system.

107

6 References

[1] “We are what we do,” Meetup. [Online]. Available:
https://www.meetup.com/. [Accessed: 16-Oct-2022].
[2] Eventbrite. [Online]. Available: https://www.eventbrite.com/. [Accessed:
16-Oct-2022].
[3] “Discover events happening in your city,” AllEvents.in. [Online]. Available:
https://allevents.in/. [Accessed: 16-Oct-2022].
[4] UNATION. [Online]. Available: https://www.unation.com/. [Accessed:
16-Oct-2022].
[5] “No-fee sports, concert, theater tickets | tickpick.” [Online]. Available:
https://www.tickpick.com/. [Accessed: 16-Oct-2022].
[6] “Last-minute sports, Music & Shows Tickets,” Gametime. [Online].
Available: https://gametime.co/. [Accessed: 16-Oct-2022].
[7] “Ticketmaster: Buy verified tickets for concerts, sports, theater and events.”
[Online]. Available: https://www.ticketmaster.com/. [Accessed: 16-Oct-2022].
[8] “Buy sports, concert and theater tickets on StubHub!,” stubhub.com.
[Online]. Available: https://www.stubhub.com/. [Accessed: 16-Oct-2022].
[9] “Features,” Whatsapp. [Online]. Available:
https://www.whatsapp.com/features. [Accessed: 13-Nov-2022].
[10] “Calendar,” Google Workspace. [Online]. Available:
https://workspace.google.com/products/calendar/. [Accessed: 13-Nov-2022].
[11] C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L. Shi, “Why is it
important to measure maintainability and what are the best ways to do it?,”
2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), 2017.
[12] I. Heitlager, T. Kuipers and J. Visser, "A Practical Model for Measuring
Maintainability," 6th International Conference on the Quality of Information and
Communications Technology (QUATIC 2007), 2007, pp. 30-39, doi:
10.1109/QUATIC.2007.8.
[13] B. Thorne, “Four nines and Beyond: A guide to high availability
infrastructure,” Work Life by Atlassian, 26-Oct-2020. [Online]. Available:
https://www.atlassian.com/blog/statuspage/high-availability. [Accessed:
16-Oct-2022].
[14] “Where do websites store passwords?,” The JavaScript Diaries,
18-Nov-2019. [Online]. Available:
https://www.jsdiaries.com/where-do-websites-store-passwords/. [Accessed:
17-Oct-2022].
[15] C. Song, “Scalable systems 101,” Educative. [Online]. Available:
https://www.educative.io/blog/scalable-systems-101. [Accessed:
17-Oct-2022].
[16] “Does page load time really affect bounce rate? - pingdom,”
pingdom.com. [Online]. Available:

108

https://www.pingdom.com/blog/page-load-time-really-affect-bounce-rate/.
[Accessed: 17-Oct-2022].
[17] J. Gaubys, “What percentage of internet traffic is mobile? [Sep '22 UPD],”
Oberlo. [Online]. Available:
https://www.oberlo.com/statistics/mobile-internet-traffic#:~:text=As%20of%20
August%202022%2C%2053.74,46.26%20percent%20coming%20from%20de
sktops. [Accessed: 17-Oct-2022].
[18] “SDLC - Waterfall model,” Tutorials Point. [Online]. Available:
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm. [Accessed:
13-Nov-2022].
[19] “Homepage,” Figma. [Online]. Available: https://www.figma.com/.
[Accessed: 13-Nov-2022].
[20] “What Is a Kanban Board and How to Use It? Basics Explained,”
Kanbanize. [Online]. Available:
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban-boar
d. [Accessed: 13-Nov-2022].
[21] Spring Framework Documentation. [Online]. Available:
https://docs.spring.io/spring-framework/docs/current/reference/html/.
[Accessed: 13-Nov-2022].
[22] “Stack overflow - where developers learn, share, & build careers.”
[Online]. Available: https://stackoverflow.com/. [Accessed: 13-Nov-2022].
[23]“Simply easy learning at your fingertips,” Online Tutorials Library. [Online].
Available: https://www.tutorialspoint.com/index.htm. [Accessed: 13-Nov-2022].
[24] “Getting started,” React. [Online]. Available:
https://reactjs.org/docs/getting-started.html. [Accessed: 13-Nov-2022].
[25] YouTube. [Online]. Available: https://www.youtube.com/. [Accessed:
13-Nov-2022].
[26] Google. [Online]. Available: https://www.google.com/. [Accessed:
13-Nov-2022].
[27] “Google scholar.” [Online]. Available: https://scholar.google.com/.
[Accessed: 13-Nov-2022].
[28] Data Science Stack Exchange. [Online]. Available:
https://datascience.stackexchange.com/. [Accessed: 13-Nov-2022].
[29] D. J. Daly and D. J. Daly, “Economics 2: EC2,” Amazon, 1987. [Online].
Available: https://docs.aws.amazon.com/ec2/index.html. [Accessed:
13-Nov-2022].
[30] M. Hollands, “Amplify,” Amazon, 2015. [Online]. Available:
https://docs.aws.amazon.com/amplify/latest/userguide/to-add-a-custom-domai
n-managed-by-google-domains.html. [Accessed: 13-Nov-2022].
[31] “Build ci CD pipeline with GitHub Actions and AWS CodeDeploy to deploy
node.js app | zero to hero,” YouTube, 02-Jul-2022. [Online]. Available:
https://www.youtube.com/watch?v=cxTg29ze1D0&ab_channel=Scale-UpSaa
S. [Accessed: 13-Nov-2022].

109

