

Bilkent University

Department of Computer Engineering

Senior Design Project

T2308

Perfent

Detailed Design Report

21901631, Beste Güney, beste.guney@ug.bilkent.edu.tr

21802838, Bora Çün, bora.cun@ug.bilkent.edu.tr

21903474, Cemal Faruk Güney, faruk.guney@ug.bilkent.edu.tr

21801831, Çağrı Eren, cagri.eren@ug.bilkent.edu.tr

21902461, Gamze Elif Çenesiz, elif.cenesiz@ug.bilkent.edu.tr

Supervisor: Cevdet Aykanat

Course Instructors: Erhan Dolak, Tağmaç Topal

12.03.2023

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfilment of the requirements of the Senior Design Project course CS491/2.

2

Contents

1 Introduction 3

1.1 Purpose of the System 3

1.2 Design Goals 3

1.2.1 Maintainability 3

1.2.2 Availability 3

1.2.3 Usability 4

1.2.4 Safety 4

1.2.5 Scalability 4

1.2.6 Performance 4

1.2.7 Portability 4

1.3 Overview 4

2 Current Software Architecture 5

3 Proposed Software Architecture 6

3.1 Overview 6

3.2 Subsystem Decomposition 6

3.3 Persistent Data Management 7

3.4 Access Control and Security 7

4 Subsystem Services 9

4.1 Application 9

4.1.1 Model 10

4.1.2 View 11

4.1.2.1 Event Attender 11

4.1.2.2 Event Planner 12

4.1.3 Controller 13

4.2 Recommender 14

4.3 Web Scraper 14

5 Test Cases 14

5.1 Functional Test Cases 14

5.2 Non-functional Test Cases 34

6 Consideration of Various Factors in Engineering Design 42

7 Teamwork Details 44

7.1 Contributing and Functioning Effectively on the Team 44

7.2 Helping Creating a Collaborative and Inclusive Environment 44

7.3 Taking Lead Role and Sharing Leadership on the Team 45

8 References 46

3

Detailed Design Report

Perfent

1 Introduction

1.1 Purpose of the System

Perfent targets any group that wants to hang out and attend events
together. It optimizes the process of finding a slot that is available for every
member and also comes with event suggestions that might interest the group
members. The event suggestions will combine the events from different web
pages and different event providers which will also cause an improvement in
the experience of browsing events. This way, the users do not have to visit
several pages to find an event that fits their preferences. Perfent aims to bring
incremental innovation to the process of organizing group events by
optimizing the process of scheduling, organizing, and finding events that are a
great fit for a group. It is aimed to enhance product performance by
distinguishing features and functionality. Digital business optimization will be
applied to create a better user experience and improve the productivity of the
system.

The users will have their individual schedules on the system where
they can indicate their busy and free time slots. For groups, these schedules
will be combined to find a free slot for the whole group. In addition, based on
the preferences of the group members, Perfent will recommend a proper
event for the group. All group members will be notified about the free slots,
the recommended event and specify whether they want to attend that event or
not.

1.2 Design Goals

1.2.1 Maintainability

The application will have the necessary documentation and tools set up
to enhance maintainability which is the ease of modifying a component or a
system to correct faults and improve performance or other attributes [1]. To
satisfy such needs our application will use the following metrics and target a
maximum of 5% code duplication threshold, a minimum of 80% unit test
coverage, and a maximum cyclomatic complexity of 20 for each unit [2].

1.2.2 Availability

The application will be available for most of the time of its lifetime. Our
application will aim for a minimum availability of 99% during its lifetime. Most
services on the internet fall between 99% and 100% of availability and our
application targets to be like one of those services at the bare minimum [3].

4

1.2.3 Usability

The user interface of the application should be easy to manage, simple
to use, and usable. It will ensure that all of the pages of the user interface can
be understood at a reasonable level and traversed in a maximum of 1 minute.

1.2.4 Safety

Any private personal information entered into the system by the user
such as interests or addresses will not be disclosed to the public and will be
safeguarded by the servers.

 Passwords entered into the system will be hashed with effective
hashing algorithms that further protect them [4].

 The application will have the necessary features to ensure that users
are going to hazard-free events with hazard-free users.

1.2.5 Scalability

Our servers should be able to scale when it is necessary and handle
the requests incoming from 5,000 concurrent users seamlessly and without
any repercussions to the users using the website and the availability of any of
Perfent’s functionality. It should be able to load balance the coming traffic
when the traffic gets heavy since not managed traffic can cause lags in the
system and lag can be a determinant factor in losing a customer [5].

1.2.6 Performance

The application will satisfy the user’s waiting time expectations and
prevent users from bouncing off our website. The application will target a 2-
second loading time threshold with a 6-7% bounce rate for the initial (entry)
loading of the website [6]. Then, for each loading of the other pages, it will
target the 1-second loading time with a 6-7% bounce rate [6]. Finally, for other
actions of the user in the user interface that do not include server interactions,
it will target the maximum action time of 100ms.

1.2.7 Portability

The website will also be portable when viewed from devices that are

not computers such as mobile devices. All of the features that operate when

the website opens from a computer will also operate and will be easy to use

when it is opened from a device that is not a computer. This is important

because as of August 2022 53.74% of all internet traffic is coming from mobile

devices instead of computers [7].

1.3 Overview

Perfent will be a web-based application that recommends events to
attend to groups of people.After signing in to Perfent, the users will be able to
be parts of one or more groups. The users will be able to either create a group
or join an existing one with invites. There can be one or more admins that

5

have access to special operations such as sending invites and removing
members. According to the group’s collective interests and their time
availability along with some customized parameters that the group sets; a set
of events will be presented to each group. Alternatively, the group can browse
a list of all events. Other than the already existing events, the group can
create custom events that they are planning to organize.

Schedules in Perfent help the group determine their common free
times. Each person has a dedicated schedule for each of their groups. Using
these individual schedules, Perfent creates a “group schedule.” This group
schedule shows the times that all the group members are available. The
group schedules provide a nice way of visualizing the availability.

Perfent will gather a variety of events from popular event and ticket
sites using web scraping. These events will be processed and categorized
automatically. Then, based on the groups’ and individuals’ past event
preferences and their clickstream data, new events will be recommended to
the groups. These recommended events will take the group members’
availability, price, distance, age, and similar preferences into account. The
system will periodically recommend events to the groups. If there are more
than one event that the group converges on, but they can only choose one
due to time constraints or other external reasons; the members can call a vote
between two or more of these events that the group wants to go to.

2 Current Software Architecture

There are other applications that are about promoting events and/or

selling tickets, such as Eventbrite, Ticketmaster, Meetup, among many others.

There are many similar websites, which means many different architectural

styles. It is not very easy to find architectural information about applications

that are not open source. However, two former Eventbrite employees (Scott

Baker - former Director of Systems Engineering and Operations, Vipul

Sharma - former Director of Data Engineering) describe Eventbrite’s high-

level software architecture in an old Quora question [8]. This discussion is not

very recent, yet it provides insight to how a large event site can be

constructed well. This section discusses Eventbrite’s architecture and

technology stack based on these two employee’s answers.

 According to the former Director of Systems Engineering and

Operations, the site is hosted on Amazon's EC2 platform and the code is

mostly written on the Django framework with Python. For load balancing and

SSL encryption, they utilize haproxy/nginx. Memcached and redis are used for

caching purposes. At the bottom of the architecture, there are the database

systems. Hbase, MongoDB, and MySQL are used for this.

 According to the former Director of Data Engineering, Eventbrite uses

“Hadoop for data storage and mapreduce for processing, and hive for

querying the data.” Services are built mainly by using Java and Python.

6

 A recent job listing on lever.co supports the reliability of this information

[9]. Since Perfent developers are much less experienced, we decided to focus

on our strengths rather than spending time learning new technologies from

scratch and we came up with the architecture described in the next section.

Therefore, sometimes there are similarities, sometimes there are differences.

3 Proposed Software Architecture

3.1 Overview

The proposed system architecture consists of 7 different layers,
including the user interface, authentication, web server, recommender,
scraper, data abstraction, and database. The web server layer manages the
back-end service of the main functionalities of the system, such as event,
profile, group, request, notification, and recommender management. The
database abstraction layer prevents direct access to the database to prevent
possible failures and uses ORM tools like Hibernate. The web scraper layer
fetches and validates online events and writes them directly to the database.
The database layer uses the Postgres database system and the entities.
Role-based authentication is used to ensure that users can only access
resources and functionalities they are authorized to access.

3.2 Subsystem Decomposition

Figure 1: Subsystem Decomposition (Click the link for high resolution figure)

 In this system there are 7 different layers called: user interface,

authentication, web server, recommender, scraper, data abstraction and

database.

https://github.com/perfent/perfent-docs/blob/main/Reports/Figures/Design/SubsystemDecomposition.png

7

 In the web server layer, the back-end service of the main functionalities

of the system is managed. This includes the event, profile, group, request,

notification and recommender management systems. Most of these

management systems communicate to the data abstraction layer to modify

database entities.

 In the database abstraction layer, we prevent direct access to the

database to prevent possible failures. Here ORM tools such as Hibernate are

used.

 In the web scraper layer, the online events are fetched and validated

and directly written to the database. Although direct access does not provide

database protection, we realized that SQL queries perform well enough so we

preferred simplicity over complexity.

 Finally, in the database layer, the Postgres database system and the

entities are located.

3.3 Persistent Data Management

For Perfent, data has a substantial value for accomplishing the

application goal. Perfent uses the Postgres database system. First of all, the

event table in this database gets updated every 15 minutes. However, when

this table is updated, one of the important aspects was to avoid inserting the

already existing tables or not handling invalid entries that are fetched from the

web. By using the unique event id’s, Perfent detects the duplicated entries

and avoids reinserting them. While doing that, it also checks whether any

information regarding this event has changed and if it did, performs the

update operations. All of these processes are performed using SQL queries.

 Secondly, when data is managed on the web server side, Hibernate is

used. Hibernate is an ORM tool, which helps easy and error-proof

development of database systems in Spring Boot. Because of the fact that

different components of the system such as scraper and server both

communicate with the same database, a possible failure there will drastically

affect all of these components. From this perspective, using an ORM tool like

Hibernate reduces the possible problems that can rise from raw SQL queries

and makes database access easy and faster for us.

3.4 Access Control and Security

Perfent employs access control and security functionalities to ensure
that the users can use the application in a safe and secure manner. First of
all, to ensure that users can not reach any resources and functionalities they
should not be reaching, we use role based authentication. Each role has
access to a set of functionalities, and each user is given a set of roles. Users
are given access to a set of functionalities according to their roles and

8

permissions gained through the role. Users need to use a form based login
that includes email and password to use their accounts and functionalities.
Users' roles can change dynamically according to operations partaken in the
application, for example if a user becomes an event runner their role will be
updated. Secondly, we manually check if a user is accessing a resource that
they are allowed to access at each function. For example, we do not allow a
user to access group information or group functionalities of a group they are
not in. Finally, we use Bcrypt2 hashing to hash every password and secure
their contents. In following, one can view a high level table of allowed
functionalities for each role:

 Group
Admin

Event
Runner

Group
Member

Non Group
Member
User

Perfent
Support

Create Group X

View Group X X

Edit Group X

Delete Group X

Create Event X

View Event X X X X X

Delete Event X X

Edit Event X X

Create Group-
Event

 X

View Group-Event X X

Edit Group-Event X X X X

Delete Group-
Event

X X

Create Profile X X X X

9

View Profile X X X X X

Edit Profile X X X X

Create
Notification

X X

Edit Notification X X

View Notification X X X X

Delete Notification X X

View Schedule X X X

Create Schedule X X

Edit Schedule X X X

Delete Schedule X X

Table 1: Access Control Matrix

4 Subsystem Services

Perfent’s subsystems are examined in 3 parts: application,
recommender, and web scraper.

4.1 Application

The application is built using the MVC (Model-View-Controller) pattern.

10

4.1.1 Model

Figure 2: Model Tier

This model represents the model tier in the application layer. All entities

in the application layer are implemented using Spring Boot’s Entity annotation.

Class Description

Entity <<Interface>> The automatic entity interface of Spring
Boots.

User Entity class for application users.

Event Entity class for events.

Notification Entity class for notifications.

Group Entity class for groups.

Table 2: Class Descriptions

11

4.1.2 View

4.1.2.1 Event Attender

Figure 3: View Tier for Event Attender

Class Description

Login Screen This class provides UI components
for the authentication

Signup Screen It enables user to register to the
system

Event Screen It provides information related to the
event such as date, place, etc.

Schedule/Calendar Screen This class shows the scheduled
events on the calendar of a user

Group Screen This class provides information
about the group members, group
events, etc.

Profile Screen This class shows personal
information of the user

Event Planning Screen It provides planning components for
an event that group members
decided to attend

12

Event Voting Screen This screen enables group members
to vote among events

My Events Screen It shows the previously attended
events to the user

Browse Event Screen It provides events available on the
application

Group Members Screen This screen is for managing group
members

Table 3: Class Descriptions

4.1.2.2 Event Planner

Figure 4: View Tier for Event Planner

Class Description

Login Screen This class provides UI components
for the authentication

Signup Screen It enables user to register to the
system

Event Screen It provides information related to the
event such as date, place, etc.

Browse Event Screen It provides events available on the
application

13

Event Creation Screen It enables event planner to create a
new event

Profile Screen This class shows personal
information of the user

Table 4: Class Descriptions

4.1.3 Controller

Figure 5: Controller Tier

This model represents the control tier in the application layer. All

controllers in the application layer are implemented using Spring Boot’s

RestController annotation.

Class Description

RestController <<Interface>> The automatic RestController interface
of Spring Boot.

Profile Controller Controller class for application user
profiles.

Event Controller Controller class for events.

Notification Controller Controller class for notifications.

Authentication Controller Controller class for authentication
functionalities such as login.

Group Controller Controller class for groups.

Table 5: Class Descriptions

14

4.2 Recommender

The Recommender System is a crucial subsystem service within our
software project that helps users discover and attend events based on their
preferences. It uses various machine learning algorithms and data analytics to
analyze user behavior and suggest events that match their interests. The
Recommender System takes into account the user's past event attendance,
click-stream data and relevant data to generate personalized
recommendations.

The Recommender System subsystem service includes several
components, such as a data ingestion service that collects event data, a
machine learning service that trains and deploys models, and a
recommendation engine that generates personalized recommendations. The
system also has a feedback loop to continuously improve the accuracy of its
recommendations based on user feedback.

4.3 Web Scraper

 The Web Scraper is used for fetching event data from a third party web
server. The data is currently obtained from “Biletix” website. The web scraping
script is called from Perfent’s web server every 5 minutes and every event on
the website is inserted into Perfent’s database. The events are obtained in
JSON format and they are formatted before their insertion to the database.

5 Test Cases

 In this section, the 50 test cases designed for Perfent are presented. Of
these test cases, 36 are functional, 14 are non-functional and they are
presented under their respective subsection. These test cases consist of test
cases that are automated or manual; verifying/validating edge cases and/or
the whole functionality. When assigning a priority/severity level, we have used
the following criteria:

● Critical: The tested functionality/feature has catastrophic effects like
crashing the entire site.

● Major: The tested functionality/feature prevents the users from using
the application correctly.

● Minor: The tested functionality/feature has no major effects, yet it does
not work as intended or is slightly annoying for the user.

5.1 Functional Test Cases

Test ID TC#1

Test Type/Category Functional, Usability

15

Title
Check if the onboarding questionnaire is shown to new users
exactly once unless they open it manually from the profile

Procedure of testing

steps

1. Check if the questionnaire is shown to a user who just
completed the sign up process.

2. Check if the user is shown the questionnaire in the
next log in after having submitted the questionnaire
the first time.

3. Check if the user is shown the questionnaire in the
next log in after having closed the questionnaire
without submitting the first time.

Expected results
The questionnaire should only be presented immediately
after signing up once or if the user wants to refill the
questionnaire.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#2

Test Type/Category Functional

Title
Verify that the user is periodically asked if they want to see
more or less of the events they currently see in their event
feed

Procedure of testing

steps

1. Check if the “show more/less like this” question is
asked at most once in every five events.

2. Check if the “show more/less like this” question is
asked at least once in every twenty events.

Expected results The question should be shown automatically once in 5-20
events in the feed.

Priority/Severity Minor

Date Tested and Test

Result

16

Test ID TC#3

Test Type/Category Functional, Usability

Title Check if the available events are shown on the group
schedule.

Procedure of testing

steps

1. Check if at least one UI element is correctly placed for
each available time range (i.e. between two busy
times).

2. Check that there are no UI elements placed in
unavailable times.

Expected results
If there are events that fit the group’s schedule, at least one
of them should be shown on the group schedule.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#4

Test Type/Category Functional, Usability, Integration

Title
Check if the changes made on a user’s Google Calendar are
reflected in Perfent schedule

Procedure of testing

steps

1. Check if creating events in Google Calendar is
automatically replicated in Perfent schedule.

2. Check if editing events in Google Calendar is
automatically replicated in Perfent schedule.

3. Check if deleting events in Google Calendar is
automatically replicated in Perfent schedule.

Expected results
Every change done in Google Calendar should be reflected
in Perfent individual and group schedules

Priority/Severity Major

17

Date Tested and Test

Result

Test ID TC#5

Test Type/Category Functional, Usability, Integration

Title
Marking a time period as “busy” in Perfent should not make
any changes in the user’s Google Calendar

Procedure of testing

steps

1. Check if marking an available period as “busy” affects
Google Calendar.

2. Check if marking an unavailable period as “busy”
affects Google Calendar.

Expected results
The Google Calendar should never be affected by a change
in Perfent Schedule

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#6

Test Type/Category Functional, Usability, Safety

Title Make sure that the names of the user’s activities in the group
schedule are hidden if the user chooses to do so

Procedure of testing

steps

1. Check if this user’s activities’ names are censored for
everyone in the group when the user enables this
option.

Expected results
When the user enables this option, their activity names must
be hidden from everyone in that group.

18

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#7

Test Type/Category Functional, Safety

Title
Check if the user can see the messages of a user that they
have blocked

Procedure of testing

steps

1. Check if blocking a user hides the already-existing
messages.

2. Check if blocking a user prevents the blocked user
from messaging this user.

3. Check if blocking a user prevents this user from
receiving the blocked user’s messages.

Expected results
Already-existing messages should stay for both sides. The
blocked user should be able to send messages, but the
receiver should not see any of the new messages.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#8

Test Type/Category Functional, Usability

Title
The user should receive a notification when they are
assigned an item to bring to the event

Procedure of testing
1. Check if the user is notified in Perfent when they are

assigned an item to bring to the event.

19

steps

Expected results
The user should be notified when they are assigned an item
to bring to the event.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#9

Test Type/Category Functional

Title
The user should not be able to agree to an event more than
once

Procedure of testing

steps
1. Check if the user can agree to an event twice.

Expected results
The user should only be able to agree to an event at most
once.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#10

Test Type/Category Functional, Usability

Title
Check if recommendations are accurate to the constraints

given by the group.

20

Procedure of testing

steps

1. Determine a set of constraints to be changed.
2. In the test group, change these constraints.
3. Test if the recommendations are accurate to given

constraints.

Expected results The recommendations are accurate to given constraints.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#11

Test Type/Category Functional, Usability

Title Check if the recommender returns the top-matching event
recommendations to the users.

Procedure of testing

steps

1. In the test group, request the recommendations.
2. Compare the top recommendations from the database

with responded recommendations.
3. Check if they are equal.

Expected results
Top responded recommendations should be the same as top
scored recommendations in the database.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#12

Test Type/Category Functional, Usability

21

Title
Check if proposed events are shown to the group at the

proposed events section.

Procedure of testing

steps

1. In the test group, a test group member proposes an
event to the group.

2. Login to other group members’ accounts in the group.
3. Check if that proposed event can be seen in the

proposed events section of other members.

Expected results Proposed events by a group member are visible by other
group members.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#13

Test Type/Category Functional, Usability

Title
Check if sorting and filtering options at event browsing are

working correctly.

Procedure of testing

steps

1. Determine a set of filters and sort options.
2. Choose a subset of them at each test stage.
3. Check if the chosen subset of them can accurately

manipulate the shown events.

Expected results
All sort and filter options are accurately manipulating the
events.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#14

22

Test Type/Category Functional, Usability

Title
Check if any change on the group schedule is shown to other
users in the group.

Procedure of testing

steps

1. In the test group, login with a test group member and
make some changes in the schedule.

2. Login with other group members.
3. Check if the first user’s changes are visible for the

other group members.

Expected results
Any change on the group schedule is visible to other group
members.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#15

Test Type/Category Functional

Title Check if the user can rate an event more than once

Procedure of testing

steps
1. Check if the user can rate the same event twice.

Expected results The second rating should overwrite the first one.

Priority/Severity Major

Date Tested and Test

Result

23

Test ID TC#16

Test Type/Category Functional, Usability

Title
The recommendation algorithm should not consider the user
if the user marked a period of time as “not available”

Procedure of testing

steps

1. Check if the recommendation algorithm recommends
an event from the unavailable period when there are
at least two other group members who have this
period as available.

Expected results
The algorithm should disregard the unavailable user and
make recommendations for other available users.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#17

Test Type/Category Functional, Usability

Title
The different view options when browsing events should not
change the order the events are presented

Procedure of testing

steps

1. Check if the order of the events change when the view
option is changed from “row view” to “list view” while
keeping the sorting and filtering options untouched.

2. For every other view option that might be added later,
check if the event order is the same as “list view”
while keeping the sorting and filtering options
untouched.

Expected results The event order should not change with the same sorting
and filtering options.

Priority/Severity Minor

Date Tested and Test

24

Result

Test ID TC#18

Test Type/Category Functional

Title
Check if the user can be invited to a group that they are
already a part of

Procedure of testing

steps
1. Check if the group admin can send an invite to a

group member.

Expected results
After the attempt, the group admin should receive an error
message with a description.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#19

Test Type/Category Functional

Title
Check if the user can mark an event as “attended” before the
event start time

Procedure of testing

steps
1. Check if the user can mark an event as “attended”

before the event start time

Expected results
The user should receive an error message telling that the
event has not started yet.

Priority/Severity Minor

25

Date Tested and Test

Result

Test ID TC#20

Test Type/Category Functional

Title
The user should not be able to join to a deleted group using
an old invite

Procedure of testing

steps
1. Check if the user can accept an old invite from a

deleted group.

Expected results
The user should receive an error message telling that the
group does not exist.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#21

Test Type/Category Functional, Usability

Title
If the only group admin leaves the group where there are
more than one regular members, the oldest member should
automatically become a group admin

Procedure of testing

steps

1. Consider a group consisting of the members A, B, C,
D where the members are sorted according to the
oldest to the newest and A is the only group admin.
Check if B becomes the only group admin when A
leaves the group.

2. Check if the group admin is chosen randomly if there
are multiple members with the exact oldest joining
date by repeating the case many times.

26

Expected results

In such a scenario, the oldest member should become the
only group admin. If there are multiple members with the
same oldest joining date, the new admin should be chosen
randomly.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#22

Test Type/Category Functional

Title Check if the user notifications are unmuted after the duration
specified by the user

Procedure of testing

steps
1. Check if a user who mutes their notifications for 24

hours can be notified at the 25th hour.

Expected results
The user should be notified for the new notifications after the
specified unmute period ends.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#23

Test Type/Category Functional, Usability

Title
Check if the date inputs are received by date picker UI
elements

27

Procedure of testing

steps
1. For each date input in Perfent, check if the date is

submitted using a date picker.

Expected results
All dates should be submitted using a date picker unless
there is an additional constraint that prevents this.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#24

Test Type/Category Functional

Title Check if the new users can provide invalid emails when
signing up

Procedure of testing

steps
1. Check if invalid emails such as “@.com” can be

submitted as email addresses in the sign up screen.

Expected results
The input should only accept valid emails and it should
inform the user accordingly.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#25

Test Type/Category Functional, Safety, Usability

28

Title
If a user opts out of the user matching feature they are not

shown to anyone and no one is recommended to them .

Procedure of testing

steps

1. Unmark the option that opts in the test user to user
matching feature.

2. Check if that user is recommended to any other users
by checking the section that recommends users to a
user.

3. Check if other test users’ are recommended to the test
user that has opted out of the user matching feature.

Expected results When the user opt out of the user matching feature they are
not shown to anyone and no one is shown to them.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#26

Test Type/Category Functional, Safety

Title

Anonymously post photos or videos to the event do not

contain any user information that gives the user’s identity to

other users.

Procedure of testing

steps

1. First test user posts photo and a video to the event
feed.

2. Login to the second test user and get the response
that contains the data for the photo and video sent by
the first user.

3. Check if that block of the response contains any user
information that belongs to the first user.

Expected results
Response that contains the video and photo information from
the first user, does not contain any personal user
information.

Priority/Severity Major

Date Tested and Test

Result

29

Test ID TC#27

Test Type/Category Functional, Usability

Title
Buttons in the application, in a short span of time can only be

clicked once (no bounce effect)

Procedure of testing

steps

1. For any button in the app, click the button twice in a
short span of time. (Ex: 500 ms)

2. Check if the effect of the button applied twice or once.

Expected results
All of the buttons apply its effect only once when it is clicked
more than one time in a short span of time.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#28

Test Type/Category Functional, Usability

Title Text fields in the application trims the entered texts

Procedure of testing

steps

1. For any text field in the app, enter a random text in the
text field with spaces present at the start and end of
the text.

2. Get the value of the text field after a value is written.
3. Check if there are any empty spaces present in the

fetched value.

Expected results
All text fields fetched values should be texts that are trimmed
and do not contain any empty spaces at the beginning or
end.

Priority/Severity Minor

30

Date Tested and Test

Result

Test ID TC#29

Test Type/Category Functional, Usability

Title
Wishlist notifications are sent in the specified time before the

event.

Procedure of testing

steps

1. Add events to the wishlist of the tested user.
2. Change the events time to a date that is close to the

current date.
3. Check if any notifications arrive to the tested user.

Expected results
Notification should arrive to the tested user since an event in
their wishlist is close to its starting date.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#30

Test Type/Category Functional, Usability

Title
All operations give feedback to the user whether it is an error

message or success message.

Procedure of testing

steps

1. For any operation in the application, do the operation
in an intended and unproblematic way.

2. Check if a success message is shown.
3. Do the operation in a way that is not expected or

problematic (Ex: try empty string for password)
4. Check if the error message shows up.

31

Expected results For any operation an error or success message shows up.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#31

Test Type/Category Functional, Safety

Title
Check if users can only report the users they have joined

events with

Procedure of testing

steps

1. Using the tested user, open the random user’s section
where they can be reported.

2. Do the operation that reports the randomly chosen
user.

Expected results Application should not let them report a user they have not
joined events with.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#32

Test Type/Category Functional, Usability

Title
An event or an artist should be added to the wishlist of the

user when they do the operation to add them.

Procedure of testing
1. Using the test user, open the section where one can

add their wanted event or artist to their wishlist.

32

steps 2. Click the button to add them into their wishlist.
3. Check the wishlist of the tested user to see if the

chosen event or artist added to the wishlist.

Expected results The event or the artist should appear in their wishlist.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#33

Test Type/Category Functional, Usability

Title Users can only use one vote in event votings.

Procedure of testing

steps

1. Create a voting activity for an event for the tested
group.

2. Login to a tested group member’s account and try to
vote more than once by clicking the vote button.

Expected results Vote operation is not performed more than once.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#34

Test Type/Category Functional, Usability

33

Title
Check if the standard expected group invite procedure is

working correctly

Procedure of testing

steps

1. Using the tested group admin, invite a tested non
group member user to the group.

2. Login to the tested user and view the section of the
application where invitations arrive.

3. Accept the invitation.
4. Login to a member of the group.
5. Check from the list of users if the invited user is now

part of the group.
Or

6. Reject the invitation.
7. Login to a member of the group.
8. Check from the list of users if the invited user is not

added to the group.

Expected results

Invitation must be sent when the group admin sends the
invitation. Invitation must be viewed in the invitation list of the
invited user. If accepted, the invited user must be added to
the group. If rejected, the invited user must not be added to
the group.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#35

Test Type/Category Functional, Usability

Title
Check if the group event recommendation notifications are

sent periodically and not missing.

Procedure of testing

steps

1. Using the tested group member, view the
recommended event notification.

2. Increment the time of the system by the notification
period T.

3. Check again if another event recommendation
notification is sent since the system time incremented.

Expected results Another notification is sent to the group member.

34

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#36

Test Type/Category Functional, Security, Usability

Title
Check if the standard expected login procedure is working

correctly.

Procedure of testing

steps

1. For the tested user, enter the correct login credentials
to the text fields.

2. Check when the login button is clicked, the application
lets the user login to their account.

3. Log out.
4. Enter incorrect login credentials to the text fields.
5. Check when the login button is clicked, the application

does not let the user into their account.

Expected results If correct credentials are entered, the user is taken into their
account, otherwise they are not taken into their account.

Priority/Severity Critical

Date Tested and Test

Result

5.2 Non-functional Test Cases

Test ID TC#37

Test Type/Category Non-functional, Accessibility

35

Title
Check if the web site can be accessed and used correctly
from all popular browsers

Procedure of testing

steps

1. Check if Perfent can be accessed and used correctly
from Google Chrome.

2. Check if Perfent can be accessed and used correctly
from Safari.

3. Check if Perfent can be accessed and used correctly
from Edge.

4. Check if Perfent can be accessed and used correctly
from Firefox.

5. Check if Perfent can be accessed and used correctly
from Opera.

Expected results Perfent should be accessed from each of these browsers
and it should behave in the same way.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#38

Test Type/Category Non-functional, Performance

Title
perfent.net should have an availability rate of at least 99%
during its lifetime

Procedure of testing

steps
1. Check that the (MTBF (mean time between failure)) /

(total lifetime so far) is greater than or equal to 99%.

Expected results
The availability rate (the formula in step 1) should be greater
than or equal to 99%.

Priority/Severity Major

Date Tested and Test

Result

36

Test ID TC#39

Test Type/Category Non-functional

Title The web scraper should be run automatically once an hour

Procedure of testing

steps
1. Check if the script is run hourly on the server

automatically.

Expected results The web scraper should be run automatically once an hour

Priority/Severity Critical

Date Tested and Test

Result

Test ID TC#40

Test Type/Category Non-functional

Title
The web scraper should not fetch events that already exist in
the database

Procedure of testing

steps

1. Check if any new event row is inserted after fetching
an identical event list that has already been fetched
and inserted before.

Expected results No new rows should be inserted.

Priority/Severity Major

Date Tested and Test

37

Result

Test ID TC#41

Test Type/Category Non-functional

Title
The web scraper script must complete execution in 3
minutes

Procedure of testing

steps
1. Check if the execution exceeds 3 minutes.

Expected results The execution should not exceed 3 minutes.

Priority/Severity Minor

Date Tested and Test

Result

Test ID TC#42

Test Type/Category Non-functional, Usability

Title Check if the text input fields accept Turkish characters

Procedure of testing

steps

1. For each text input field in Perfent, Check if the
following characters and their capital versions can be
inserted and submitted: ğ, ü, ş, ı, İ, ö, ç.

Expected results
The user should be able to insert and submit these
characters to text input fields unless there is a constraint that
prevents this.

Priority/Severity Minor

38

Date Tested and Test

Result

Test ID TC#43

Test Type/Category Non-functional, Usability, Performance

Title
User’s clickstream data is saved to the database and not

lost.

Procedure of testing

steps

1. Open the events page.
2. Click and hover over events systematically according

to the predefined clicking plan.
3. Check if the occurred clicking activity is written to the

database.

Expected results Occurred click and hover activity should be written to the
database in some structural way.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#44

Test Type/Category Non-functional, Security

Title Check if session cookies are non-functional after 1 hour.

Procedure of testing

steps

1. Login to the tested user’s account entering the correct
credentials.

2. Set the time of the system to 1 hour later.
3. Check the cookies and their active status.

Expected results
Status should be inactive and session cookie should not let
the user do any more operations in their account.

39

Priority/Severity Critical

Date Tested and Test

Result

Test ID TC#45

Test Type/Category Non-functional, Performance, Scalability

Title
Check if the server withstands the specified amount of

spammed requests.

Procedure of testing

steps

1. Open a load test tool.
2. Spam requests to an endpoint that does not require

authorization.
3. Check if the server is still operational and answering

requests.

Expected results Server is operational unless an expected request threshold is
hit.

Priority/Severity Critical

Date Tested and Test

Result

Test ID TC#46

Test Type/Category Non-functional, Performance

Title Recommendations are accurate at 70% at lowest.

Procedure of testing

steps

1. Wait for the application to be used for a while or use
the application with a group of people. (A human
should use it)

2. Check if the result generated by the evaluation

40

metrics is above 70%.

Expected results Evaluation model gives accuracy of at least 70%.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#47

Test Type/Category Non-functional, Security

Title Passwords are hashed according to bcrypt2 standards

Procedure of testing

steps

1. For the tested user, fetch its password in the
database.

2. Compare the format of the password with bcrypt2
standards.

Expected results Password is hashed according to bcrypt2 standards.

Priority/Severity Critical

Date Tested and Test

Result

Test ID TC#48

Test Type/Category Non-functional, Performance, Scalability

Title Any request should be responded under 1 second

41

Procedure of testing

steps

1. Start the timer.
2. Request to the endpoint that has the highest amount

of data when its request data amount and response
data amount is summed.

3. Stop the timer.
4. Check if the difference between times is under 1

seconds.

Expected results Difference is at most 1 second.

Priority/Severity Major

Date Tested and Test

Result

Test ID TC#49

Test Type/Category Non-functional, Performance

Title
Each user’s recommendations are updated after they give an

explicit feedback in 1 hour.

Procedure of testing

steps

1. Store the user’s current recommendations.
2. The tested user rates an event or gives any other type

of explicit feedback.
3. Wait for 1 hour (it may be important here to wait

because of the high amounts of operations in creating
recommendations)

4. Compare the current recommendations with the
stored ones.

Expected results Compared recommendations should be different.

Priority/Severity Major

Date Tested and Test

Result

42

Test ID TC#50

Test Type/Category Non-functional, Security

Title
Check if the request sender receives an accurate error when

it requests a resource their role does not have access.

Procedure of testing

steps

1. Using the tested user, try to request an endpoint their
role does not have access to.

2. Check if the error message saying they do not have
access to that endpoint is sent as a response.

Expected results
An error message saying they do not have access to that
endpoint is sent as a response.

Priority/Severity Critical

Date Tested and Test

Result

6 Consideration of Various Factors in Engineering Design

In the development process of Perfent, our team had the mission to
have an easily maintainable and valuable product in the existing market. To
make our product more significant than others, we tried to consider different
aspects of the engineering design.

First of all, the main viewpoint of Perfent is the contribution to the social
life of humans. In the analysis stage of our application, we have considered
various user profiles and how they would benefit from this application.
Especially, considering the long lasting Covid-19 period, the social life of
people was significantly less active than it used to be. In addition to that,
scheduling events with friends has always been somewhat challenging. So to
help people to have a more active social life, the requirements of Perfent are
analyzed reflecting this social aspect and making social life the primary
concern of the application. This was also important in terms of health because
we believe social activities are significant contributors to the psychological
health of humans. After the quarantine period, we believe Perfent will help
people recover faster and increase their welfare.

 Secondly, we tried to fetch as many events as possible with Perfent.
Many events from different categories such as music, art, family, and shows
are fetched from the web with regular periods. With this variety, we first tried
to increase the availability for our users in terms of time and money because,
in Perfent, we request our users to provide their budget. Then we recommend
affordable events. Besides this economic perspective, we believe requesting

43

many events from different categories will also benefit event holders
financially. Their events will be advertised to the correct audience due to our
recommendation system and we think their customer rates will increase with
this approach. In addition to these, Perfent will guide users to be updated on
the events and this can potentially increase the number of cultural activities
they perform as well. Eventually, we believe this will help cultural development
as well.

 In terms of safety, Perfent needed to consider various points. First of
all, when the events are considered, we should show users events from
trusted sources. Otherwise, users could have been directed to fraudulent
websites. To avoid this, events are retrieved from a reliable source. Secondly,
all the user information regarding the login details or preferences needs to be
stored safely. For that, we utilized different security packages in the web
server of the application.

 Perfent is initially considered a local application specific to Turkey.
Because of that, its global effects would be a consideration for now. In the
future, if it fits the market in Turkey, it can be extended to other countries.

 When the given details are considered, the factors and their effects can
be summarized in the table below.

Factor Effect (1-10)

Social 10

Cultural 8

Economic 7

Safety 7

Welfare 4

Public Health 3

Global 0

Environmental 0

Table 6: The factors in engineering design and their effects on Perfent

44

7 Teamwork Details

7.1 Contributing and Functioning Effectively on the Team

● Beste: She worked in the process of writing the reports and works

actively on the web scraper and web server components.

● Çağrı: Worked in writing the reports, set up the server and applications

working on the server, created the CI/CD pipeline, worked on some

features of web server, and currently working on the recommendation

system.

● Bora: Contributed in all reports, implementation, and brainstorming.

Actively attended all group meetings and suggested ideas. Took

responsibility for web scraper and web server components with Beste

so far in the implementation. Reviewed code when requested.

● Faruk: Completed the required parts of the reports. Took and shared

responsibility without creating any problems. Expressed his strengths

and weaknesses to the team well to take the role that is the most

suitable.

● Gamze Elif: Contributed all of the reports and took part in the UI design

of the web-app. Currently working on the recommender system and

frontend of the project.

7.2 Helping Creating a Collaborative and Inclusive Environment

● Beste: In the development process of the web scraper and web server
components, she worked closely with Bora and Cagri and took their
ideas. In addition to that, whenever she made a development, she
used the version control system Git to create pull requests and take
review them so other developers could also view the updates in the
project.

● Çağrı: Suggested ideas at group meetings and showed decent
contribution in the group meetings. Encouraged others to talk and voice
their opinions both at live group meetings and whatsapp group chat.
Talked and consulted to other group members when a problem
occurred.

● Bora: Valued each member’s opinions in the meetings. Always
suggested ideas in a non-assertive manner in order to encourage
brainstorming. Was flexible in terms of group meeting times when
someone could not make it to the fixed meeting time because every
member might have something valuable to add to the conversation.
Encouraged the use of tools like JIRA and GitHub to make
collaboration easier.

45

● Faruk: Shared the efforts equally with Elif while designing the front-end.
Took feedback from teammates on the work that was done and
changed it accordingly. Tried to make sure the work is distributed
equally between the team members.

● Gamze Elif: Attended the meetings and shared ideas with team
members. Most of the time shared the workload with other members
and worked collaboratively on the recommender system and frontend
of the project.

7.3 Taking Lead Role and Sharing Leadership on the Team

● Beste: She started the development of web scraper and web server
components. After the initiation, she continued the development with
other team members.

● Çağrı: Usually managed the discussions and gave direction to
discussions in the live group meetings while also partaking in the
discussions.

● Bora: Actively offered up ideas in subjects he is confident in.
Suggested/set up meetings before regular group meetings started.
Managed the use of JIRA issues. Encouraged code review tradition.
Shared leadership by letting other teammates be more vocal about
machine learning subjects since his machine learning knowledge is not
the best.

● Faruk: Took initiative while designing and developing the front-end part
of the project. Requested services from the team members that work
on the back-end. Communicated with others on which parts are lagging
behind and where help is needed. Participated and gave ideas in
discussions during meetings.

● Gamze Elif: Give ideas about the functional requirements of the project
and the implementation process. Managed the UI design of the
application and also took part in implementation.

46

8 References

1) C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L. Shi, “Why is it

important to measure maintainability and what are the best ways to do it?,”

2017 IEEE/ACM 39th International Conference on Software Engineering

Companion (ICSE-C), 2017.

2) I. Heitlager, T. Kuipers and J. Visser, "A Practical Model for Measuring

Maintainability," 6th International Conference on the Quality of Information

and Communications Technology (QUATIC 2007), 2007, pp. 30-39, doi:

10.1109/QUATIC.2007.8.

3) B. Thorne, “Four nines and Beyond: A guide to high availability

infrastructure,” Work Life by Atlassian, 26-Oct-2020. [Online]. Available:

https://www.atlassian.com/blog/statuspage/high-availability. [Accessed: 16-

Oct-2022].

4) “Where do websites store passwords?,” The JavaScript Diaries, 18-Nov-

2019. [Online]. Available: https://www.jsdiaries.com/where-do-websites-store-

passwords/. [Accessed: 17-Oct-2022].

5) C. Song, “Scalable systems 101,” Educative. [Online]. Available:

https://www.educative.io/blog/scalable-systems-101. [Accessed: 17-Oct-

2022].

6) “Does page load time really affect bounce rate? - pingdom,” pingdom.com.

[Online]. Available: https://www.pingdom.com/blog/page-load-time-really-

affect-bounce-rate/. [Accessed: 17-Oct-2022].

7) J. Gaubys, “What percentage of internet traffic is mobile? [Sep '22 UPD],”

Oberlo. [Online]. Available: https://www.oberlo.com/statistics/mobile-internet-

traffic#:~:text=As%20of%20August%202022%2C%2053.74,46.26%20percent

%20coming%20from%20desktops. [Accessed: 17-Oct-2022].

8) “What is Eventbrite’s Architecture?,” Quora, 01-Sep-2011. [Online].

Available: https://www.quora.com/What-is-Eventbrites-architecture.

[Accessed: 12-Mar-2023].

9) “Senior Software Engineer - SEO,” Lever. [Online]. Available:

https://jobs.lever.co/eventbrite/15c7fb0c-ec37-44e8-a767-7ea818f78115.

[Accessed: 12-Mar-2023].

