

Bilkent University

Department of Computer Engineering

Senior Design Project

T2308

Perfent

Design Project Final Report

21901631, Beste Güney, beste.guney@ug.bilkent.edu.tr

21802838, Bora Çün, bora.cun@ug.bilkent.edu.tr

21903474, Cemal Faruk Güney, faruk.guney@ug.bilkent.edu.tr

21801831, Çağrı Eren, cagri.eren@ug.bilkent.edu.tr

21902461, Gamze Elif Çenesiz, elif.cenesiz@ug.bilkent.edu.tr

Supervisor: Cevdet Aykanat

Course Instructors: Erhan Dolak, Tağmaç Topal

19.05.2023

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfilment of the requirements of the Senior Design Project course CS492.

2

Contents

1 Introduction 4

2 Requirement Details 4

2.1 Overview 4

2.1.1 Groups 4

2.1.2 Schedules 5

2.1.3 Events and Recommendation 5

2.2 Functional Requirements 6

2.2.1 Event Functionalities 6

2.2.2 Group Functionalities 6

2.2.3 Schedule Functionalities 7

2.2.4 Profile Functionalities 7

2.3 Non-functional Requirements 7

2.3.1 Maintainability 7

2.3.2 Availability 7

2.3.3 Usability 7

2.3.4 Safety 8

2.3.5 Performance 8

2.3.6 Portability 8

3 Final Architecture and Design Details 8

3.1 Overview 8

3.2 Subsystem Decomposition 9

3.3 Persistent Data Management 9

3.4 Hardware/Software Mapping 10

4 Development/Implementation Details 11

4.1 Recommendation System 11

4.2 Cloud 14

4.3 Event Scraping 14

4.4 Web Server 14

4.4.1 Google Calendar Integration 15

4.5 Frontend 15

5 Test Cases and Results 19

5.1 Functional Test Cases 19

5.2 Non-functional Test Cases 39

6 Maintenance Plan and Details 47

7 Other Project Elements 48

7.1 Consideration of Various Factors in Engineering Design 48

7.2 Ethics and Professional Responsibilities 50

7.3 Teamwork Details 50

7.3.1 Contributing and functioning effectively on the team 50

7.3.2 Helping creating a collaborative and inclusive environment 51

7.3.3 Taking lead role and sharing leadership on the team 52

7.3.4 Meeting objectives 52

3

7.4 New Knowledge Acquired and Applied 53

8 Conclusion and Future Work 53

9 References 54

4

Design Project Final Report

Perfent

1 Introduction

Perfent targets any group that wants to hang out and attend events
together. It optimizes the process of finding a slot that is available for every
member and also comes with event suggestions that might interest the group
members. The event suggestions will combine the events from different web
pages and different event providers which will also cause an improvement in
the experience of browsing events. This way, the users do not have to visit
several pages to find an event that fits their preferences. Perfent aims to bring
incremental innovation to the process of organizing group events by
optimizing the process of scheduling, organizing, and finding events that are a
great fit for a group. It is aimed to enhance product performance by
distinguishing features and functionality. Digital business optimization will be
applied to create a better user experience and improve the productivity of the
system.

The users have their individual schedules on the system where they
can indicate their busy and free time slots. For groups, these schedules are
combined to find a free slot for the whole group. In addition, based on the
preferences of the group members, Perfent recommends a proper event for
the group. All group members will be notified about the free slots, the
recommended event and specify whether they want to attend that event or
not.

2 Requirement Details

2.1 Overview

Perfent is a web-based application that recommends events to attend
to groups of people. In this subsection, an overview of the features are
categorized and explained.

2.1.1 Groups

After signing in to Perfent, the users are able to be parts of one or more
groups. The group system is very similar to that of Whatsapp’s group system
[1].The users are able to either create a group or join an existing one with
invites. There can be one or more admins that have access to special
operations such as sending invites and removing members.

The users are able to join more than one group and they can “switch”
between the groups so that they can see data that is related to that “current
group.”

5

The main reason a group is created is to find the best events to attend
to with that group. According to the group’s collective interests and their time
availability along with some customized parameters that the group sets; a set
of events will be presented to each group. Alternatively, the group can browse
a list of all events, even if those events are not related to the group. If the
group is interested in one of these presented or other events, they can attend
that event. Detailed information about choosing an event will be explained in
the following subsections.

2.1.2 Schedules

Schedules in Perfent help the group determine their common free
times. Each person has a dedicated schedule for each of their groups. Using
these individual schedules, Perfent creates a “group schedule.” This group
schedule shows the times that all the group members are available. The
group schedules provide a nice way of visualizing the availability and they are
also used to filter the recommended events, so that all the members can go to
the recommended events.

In the early iterations of Perfent, the users are only able to create
schedules using Google Calendar [2]. In the later stages, Perfent’s own
schedule interface will be implemented. Alternatively, people will be able to
import calendars from different popular third-party services in the later stages.

If a time period in a user’s schedule is free, but the user does not want
to attend an event at that time; they can set that time period as “occupied”
directly from Perfent without changing their calendar in a third-party calendar.

2.1.3 Events and Recommendation

Perfent gathers a variety of events from the popular event site Biletix
using web scraping. These events are processed and categorized
automatically. Then, based on the groups’ and individuals’ past event
preferences and their clickstream data, new events are recommended to the
groups. These recommended events take the group members’ availability,
distance, and similar preferences into account. The system periodically (once
a week) recommends events to the groups.

The users do not have to wait for the system’s recommendations, they
can browse all the upcoming events and make suggestions to their groups as
well. In Perfent’s terminology, this is called “proposing an event.” By using
various sorting and filtering options, the users can find suitable events easily.

The events that are recommended by the system or proposed by the
group members can be viewed in a list. In this list, the group members can
indicate their opinions by agreeing, disagreeing, or staying neutral with each
event. Perfent assumes that each group already has a platform for verbal
discussion and does not complicate the implementation process by including
a group chat feature. The agreeing and disagreeing provides a handy
visualization for the group members which allows them to understand what
the rest of the group wants. Of course, this process does not compel the

6

group to attend that event. This is just for understanding the group’s stance on
the events.

Using the feature above and understanding their stance on attending
the event, the group can choose to attend an event. Then, the group admins
can mark the event as ”attended” indicating that they will attend the event. By
doing so, the group can indicate that they are attending the event, which
provides feedback to the recommendation algorithm.

In this iteration, a ticket buying or event reservation system is not
implemented for events found from Biletix. However, to make things easier,
Perfent will redirect the users to Biletix’s event page where they can perform
these actions.

The users can rate the events in order to provide additional feedback to
the recommendation algorithm. Aside from the rating data, clickstream data is
collected and processed to get an idea of which events draw the users
attention. When recommending, the event ratings are more dominant in the
recommendation choice. However, we expect a scarcity in this type of data
and consequently decided to include clickstream data to help.

2.2 Functional Requirements

2.2.1 Event Functionalities

● When a new user joins the system, the system presents an optional

questionnaire to gather user preferences. This questionnaire asks

which categories, artists, and events the user likes from a given set.

● The users can browse all the upcoming and past events with filtering,

sorting and search functionalities.

● The users can browse the events suggested to their currently chosen

group.

● The users can browse the events suggested to themselves only

(independent from any groups).

● The users can rate events to improve suggestion accuracy..

● The system will notify the events that are the best fit for the group

periodically (once a week).

2.2.2 Group Functionalities

● The users can create groups.

● The users can join already existing groups via invitations.

● The group members can view basic information about their groups

such as name, members, creation date, etc.

● The group members can propose events to their groups.

● The group admins can invite other users to their group.

● The group admin can remove members from their group.

● The group admin can make other group members group admins.

7

● The groups can view the events they have attended.

● The users can switch between their “group views” so that they can see

what events are suggested to their currently chosen group.

● The group members can leave the groups they want.

● The group members can optionally agree or disagree to events

proposed by the group members or recommended by the system.

● The group admins can mark events as attended.

2.2.3 Schedule Functionalities

● The users and groups can have a schedule view that shows events in

the free periods.

● The users can mark periods in the schedule as occupied.

● The users can import an already existing schedule from Google

Calendar.

● The users can synchronize their schedules if the Google Calendar

schedule is updated.

● When viewing the schedules, the users can filter out other member’s

activities.

2.2.4 Profile Functionalities

● The users can have a profile page where other users and they can
view information about the user such as name, surname, email etc.

● The users can edit some information about them such as email,
password, etc.

● The users can search other user’s names to find their profile pages.

2.3 Non-functional Requirements

2.3.1 Maintainability

The application’s source code is mostly clean and well-organized to

ease the maintenance. The application logs the possible errors to make

debugging easier.

2.3.2 Availability

The application will be available for most of the time of its lifetime. Our
application will aim for a minimum availability of 99% during its lifetime. To
achieve this, we use AWS’s reliable hosting services and make use of their
load balancers. We also installed pipelines to our GitHub repositories to
automate and secure the deployment process.

2.3.3 Usability

The user interface of the application is easy to manage, simple to use,
and usable. Thanks to our testers’ feedback, we have ensured that all of the

8

pages of the user interface can be understood at a reasonable level and
traversed in a maximum of 1 minute.

2.3.4 Safety

Any private personal information entered into the system by the user
such as interests or addresses will not be disclosed to the public and will be
safeguarded by the servers.

Passwords entered into the system are hashed with BCRYPT2 hashing
algorithm that further protects them [3].

The data is sent over the HTTPS protocol which secures the sensitive
information.

2.3.5 Performance

The application satisfies the user’s waiting time expectations and
prevents users from bouncing off our website. The application targets a 2-
second loading time threshold with a 6-7% bounce rate for the initial (entry)
loading of the website [4]. Then, for each loading of the other pages, it will
target the 1-second loading time with a 6-7% bounce rate [4]. Finally, for other
actions of the user in the user interface that do not include server interactions,
it will target the maximum action time of 100ms.

2.3.6 Portability

The website is also portable when viewed from devices that are not
computers such as mobile devices. All of the features that operate when the
website opens from a computer will also operate when it is opened from a
device that is not a computer. This is important because as of August 2022
53.74% of all internet traffic is coming from mobile devices instead of
computers [5].

3 Final Architecture and Design Details

3.1 Overview

 Perfent has a compound system architecture that consists of

dependent and collaborative components inside. The primary data is collected

through a web scraper whereas the application resides in back-end and front-

end systems. The machine learning part of the application is also a different

component that regularly analyze data for better recommendation

performance. In this section, the details behind this architecture and the

design will be explained in further detail.

9

3.2 Subsystem Decomposition

Figure 1: Subsystem Decomposition

In this system, there are 7 different layers called: user interface,

authentication, web server, recommender, scraper, data abstraction, and

database.

 In the web server layer, the back-end service of the main functionalities

of the system is managed. This includes the event, profile, group, request,

notification, and recommender management systems. Most of these

management systems communicate to the data abstraction layer to modify

database entities.

 In the database abstraction layer, we prevent direct access to the

database to prevent possible failures. Here ORM tools such as Hibernate are

used.

 In the web scraper layer, the online events are fetched and validated

and directly written to the database. Although direct access does not provide

database protection, we realized that SQL queries perform well enough so we

preferred simplicity over complexity.

 Finally, in the database layer, the Postgres database system and the

entities are located.

3.3 Persistent Data Management

For Perfent, data has a substantial value for accomplishing the

application goal. Perfent uses the Postgres database system. First of all, the

event table in this database gets updated every 15 minutes. However, when

this table is updated, one of the important aspects was to avoid inserting the

10

already existing tables or not handling invalid entries that are fetched from the

web. By using the unique event id’s, Perfent detects the duplicated entries

and avoids reinserting them. While doing that, it also checks whether any

information regarding this event has changed and if it did, performs the

update operations. All of these processes are performed using SQL queries.

 Secondly, when data is managed on the web server side, Hibernate is

used. Hibernate is an ORM tool, which helps easy and error-proof

development of database systems in Spring Boot. Because of the fact that

different components of the system such as scraper and server both

communicate with the same database, a possible failure there will drastically

affect all of these components. From this perspective, using an ORM tool like

Hibernate reduces the possible problems that can rise from raw SQL queries

and makes database access easy and faster for us.

3.4 Hardware/Software Mapping

Figure 2: Hardware-Software Mapping

 In the hardware-software mapping of the application, we have 3 main

blocks. The client enters our system using the web browser. The web browser

sends HTTPS requests to our Web server residing in AWS servers. The web

server consists of different modules but it has four major modules. The first

module handles the user profiles and registration process whereas the

recommendation module handles the machine learning recommendation

system. Group and event management modules handle the core

functionalities of the system. After the HTTPS request, the corresponding

module from the web server proceeds the necessary request to the SQL

server. SQL server is also in AWS servers.

11

4 Development/Implementation Details

4.1 Recommendation System

Our recommendation system is used to recommend events for groups
and individual users. The recommendation system in most general sense
collects data from the user through the frontend, and processes this data to
find appropriate events for the users. This recommendation system can be
examined in three different subsystems: collecting user data, constructing a
score system by processing this data, and recommending events. Our code
operates these systems by running python scripts periodically which ensure
our recommendation system adapts to the users preferences. Our code is
generally working in the following principle, it fetches the data that reflects
user’s preferences, it matches this data with scores built in the system, and
finally it finds recommended events according to scores each event received
for each user.

4.1.1 Data Collection

Our recommendation system needs to collect data from the user
activities to get an idea which events a user can enjoy or not enjoy. In our
recommendation system we collect and use the following data:

● Our recommender collects and uses the data when a group decides to
join an event.

● Our recommender collects and uses the data when a group member
proposes an event to its group.

● Our recommender collects and uses the data when a group member
votes in an agree/disagree voting.

● Our recommender collects and uses the data when a user clicks and
browses an event.

● Our recommender collects and uses the data when a user reviews an
event.

● Our recommender collects and uses the data when a user indicates
their preferences on events, and categories in the onboarding form.

Through the help of frontend these data is taken from the user and sent
to the backend which writes the data to the database so that our python
scripts can fetch the data. These data is fetched by the recommendation
system through python scripts that use normal written SQL queries with the
utilization of the psycopg2 library.

4.1.2 Data Processing

Our recommendation system processes the collected data to create a
score system so that our event recommendation algorithm can operate with
these scores. We group the events under three groups for each user in our
recommendation system.

● Not Interacted Event: These are the events that the user has not
performed sufficient activities that the recommendation system can
detect that this user has an interaction with the event. Transitioning
through the Interacted Event group, the user is required to at least
click and observe the event two times or the event should be proposed

12

by a group member of the user. Transitioning through the Reviewed
Event group, users are required to indicate the system they will join the
event and they review the event. Normally when the user joins the
system, they have this relationship with all of the events in the system.
Our prediction algorithm works on these events and predicts a score
for the user.

● Interacted Event: These are the events that the user has shown
sufficient interaction which mentioned above. We do not use the
prediction algorithm on these events instead we use the data collected
from the users and create a score through an evaluation framework.
Transitioning through the Reviewed Event group, users are required to
indicate the system they will join the event and they review the event.

● Reviewed Event: These are the events that users have joined and
decided to review. We neither use the prediction algorithm or
evaluation framework to calculate the scores of these types of events.
Instead we directly use the user given score.

Our recommendation system requires us to use an evaluation
framework and match user activities with an event interest score because we
cannot use event reviews to create recommendations for the users. This is
because when an event is reviewed, the event is already finished and there
are no reason to recommend this event to the user.

Thus, we use the following evaluation structure to give a score for the
Interacted Events:

● Event Interest Score = Category Interest Score (max 2 points) +
Event Proposing Score (max 1 point) + Event Attending Score (max
0.75 points) + Event Voting Score (max 0.75 points) + Event
Browsing Score (max 0.5 points)

Category Interest Score: Represents the interest of the user to a certain
category and calculated in the following way (We might also add a time limit to
the onboarding score to be active in the category score calculation. This is
because user’s interests might change in the future. This will be added if we
notice recommendation system’s performance is negatively affected by the
onboarding score):

If user filled the onboarding form.

● Category Interest Score = Median score of all events that are not in
the group of Not Interacted Event (max 1.4 points (normalized)) +
Onboarding Score (max 0.6 points)

If user did not fill the onboarding form.

● Category Interest Score = Median score of all events that are not in
the group of Not Interacted Event (max 2 points)

Onboarding Score: Represents the score user collected after filling the
onboarding form. Onboarding score is attached to an event category.

13

If user’s event choice is same as his/her category choice which is x:

● Onboarding Score of the category x = 0.6 points

If user has chosen the category x in the onboarding form:

● Onboarding Score of the category x = 0.48 points

If user has chosen an event with the category x in the onboarding form:

● Onboarding Score of the category x = 0.36 points

Event Proposing Score: Represents the score when a user proposes an
event to a group.

Event Attending Score: Represents the score when a user attends to an
event.

Event Voting Score: Represents the score when a user agrees or disagrees
to attend an event.

If a user disagrees to attend an event.

● They get no scores from Event Attending Score.

If a user agrees to attend an event.

● They get full scores from Event Proposing Score.
● They get full scores from Event Attending Score.

Event Browsing Score: Represents the score of user clicking, viewing and
browsing the events.

4.1.3 Predicting Event Interests

In our system, we predict the scores of events the user has not
interacted with before. Thus, we predict the events grouped under the Not
Interacted Event. To do such a prediction for a single user, we use the
already calculated event interest scores of all users. To do interesting
predictions we use the Collaborative Filtering Pearson (CFP)
recommendation algorithm.

Collaborative Filtering Pearson (CFP): This algorithm is based on finding
users with similar scores, and using their scores for a specific event to predict
the score of another user for that specific event.

Our version of the CFP uses the pearson correlation by taking the k value 10.
This means that when predicting an event’s score for a user, 10 similar users
are found and their scores for that specific event is used to predict the score.

4.1.4 Recommending Events

Our recommendation system recommends events in two ways: 1)
recommending events to users, 2) recommending events to groups.

Recommending Events to Users: Recommending events to users is
straightforward since from the other subsections above one can see that we
have user event interests score for each event for each user. Thus, only thing

14

to do is to pick top n events when events are sorted according to their interest
scores.

Recommending Events to Groups: Recommending events to groups is not
straightforward as we need to recommend events in such a way that the
recommended events will be liked by everyone. To achieve this we have used
an aggregation method called Average Without Misery.

Average Without Misery: Average Without Misery is an aggregation
algorithm that picks an option that has the best average score by all of the
group members but on top of that it does not pick options that will be
significantly disliked by some members.

Thus our version of the AWM algorithm picks events that have the most
scores on average and on top of that picked events will not be significantly
disliked by a group member.

After using AWM on the event interest scores of the group members, top
event choices is used to get recommendations for the group.

4.2 Cloud

In cloud to host our services we use the Amazon Web Services. In
order to host our backend server, frontend server, event scraper, and
recommendation system we use an EC2 instance. Our EC2 instance is
running on the operating system of Amazon Linux. To store and manage the
data we use a PostgreSQL database which is running on RDS. To manage
connections and load balance our incoming requests we use Amazon Elastic
Load Balancer (ELB). Currently all these services are actively running and
have no cost to us as we are running them in free tier.

4.3 Event Scraping

The implementation of event scraping was relatively easy. We sent a
simple request to Biletix’s site to receive a well-formatted JSON request that
contained the information we needed. We run a Python script that sends this
request automatically using a cron job. Once we receive the data, we convert
it to our event data format and save it to our database. If a fetched event
already exists, we do not save it again and if it is updated, we update it in our
database.

When we started the project, we wanted to fetch data from several event
sites. However, because it is a whole other problem to differentiate between
the same event in different sites, we decided to move on with only Biletix
events.

4.4 Web Server

We built our web server using Spring Boot with Java. We allowed the
clients to send requests to our server by creating endpoints. For every
functionality, we have created the necessary entity classes that represent
database tables and relations. To manipulate the database contents, we
created service classes that contain the application’s business logic. Finally,
for the clients to access these methods, we have created controller classes
and methods and defined access URLs.

15

Throughout the implementation of the web server, we took great care of
logging possible errors and handling them. If an error occurs, the client is
notified with an appropriate message.

4.4.1 Google Calendar Integration

To integrate Google Calendar to Perfent, we created a project on
Google Cloud Console and configured it with our domain and credential
information. Then, using the Google Calendar API, we managed to get access
to the users’ Google Calendar activities. There were some unnecessary fields
in the fetched data, so we created our own format and saved the data this
way.

At the time of the implementation our site used HTTP protocol but
Google Calendar API only allowed selected test users to be authorized by
Google. To overcome this issue, we had to enable HTTPS for our site by
getting an SSL certificate. AWS issued us a certificate and we installed the
certificate to our load balancer, which enabled HTTPS. Now, anyone with a
Google account can use the schedule functionalities.

4.5 Frontend

At the frontend of the application, Perfent is developed using React and
MUI library. After the login process, the user credentials are used through the
all front end application. This Redux pattern helped us to determine who the
user is very easily.

Figure 3: Perfent Login Page

16

Figure 4: Perfent Signup Page

Figure 5: Perfent Questionnarie Page

At Perfent, to understand the user preferences better, we ask for an optional

questionnaire upon registration. The choices in this questionnaire, provides better

suggestions for users.

17

Figure 6: Perfent Questionnaire Pages

18

Figure 7: Perfent User Search Page

Figure 8: Perfent User Profile Page

19

Figure 9: Perfent Events Page

5 Test Cases and Results

In this section, the 50 test cases designed for Perfent are presented. Of
these test cases, 36 are functional, 14 are non-functional and they are
presented under their respective subsection. These test cases consist of test
cases that are automated or manual; verifying/validating edge cases and/or
the whole functionality. When assigning a priority/severity level, we have used
the following criteria:

● Critical: The tested functionality/feature has catastrophic effects like
crashing the entire site.

● Major: The tested functionality/feature prevents the users from using
the application correctly.

● Minor: The tested functionality/feature has no major effects, yet it does
not work as intended or is slightly annoying for the user.

5.1 Functional Test Cases

Test ID TC#1

Test Type/Category Functional, Usability

Title
Check if the onboarding questionnaire is shown to new users
exactly once unless they open it manually from the profile

Procedure of testing

steps

1. Check if the questionnaire is shown to a user who just
completed the sign up process.

2. Check if the user is shown the questionnaire in the
next log in after having submitted the questionnaire
the first time.

20

3. Check if the user is shown the questionnaire in the
next log in after having closed the questionnaire
without submitting the first time.

Expected results
The questionnaire should only be presented immediately
after signing up once or if the user wants to refill the
questionnaire.

Priority/Severity Minor

Date Tested and Test

Result
 18.05.2023 / Passed

Test ID TC#2

Test Type/Category Functional

Title
Verify that the user is periodically asked if they want to see
more or less of the events they currently see in their event
feed

Procedure of testing

steps

1. Check if the “show more/less like this” question is
asked at most once in every five events.

2. Check if the “show more/less like this” question is
asked at least once in every twenty events.

Expected results
The question should be shown automatically once in 5-20
events in the feed.

Priority/Severity Minor

Date Tested and Test

Result
N/A

Test ID TC#3

Test Type/Category Functional, Usability

21

Title
Check if the available events are shown on the group
schedule.

Procedure of testing

steps

1. Check if at least one UI element is correctly placed for
each available time range (i.e. between two busy
times).

2. Check that there are no UI elements placed in
unavailable times.

Expected results
If there are events that fit the group’s schedule, at least one
of them should be shown on the group schedule.

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#4

Test Type/Category Functional, Usability, Integration

Title
Check if the changes made on a user’s Google Calendar are
reflected in Perfent schedule

Procedure of testing

steps

1. Check if creating events in Google Calendar is
automatically replicated in Perfent schedule.

2. Check if editing events in Google Calendar is
automatically replicated in Perfent schedule.

3. Check if deleting events in Google Calendar is
automatically replicated in Perfent schedule.

Expected results
Every change done in Google Calendar should be reflected
in Perfent individual and group schedules

Priority/Severity Major

Date Tested and Test

Result
19.05.2023 / Passed

22

Test ID TC#5

Test Type/Category Functional, Usability, Integration

Title
Marking a time period as “busy” in Perfent should not make
any changes in the user’s Google Calendar

Procedure of testing

steps

1. Check if marking an available period as “busy” affects
Google Calendar.

2. Check if marking an unavailable period as “busy”
affects Google Calendar.

Expected results
The Google Calendar should never be affected by a change
in Perfent Schedule

Priority/Severity Major

Date Tested and Test

Result
17.05.2023 / Passed

Test ID TC#6

Test Type/Category Functional, Usability, Safety

Title
Make sure that the names of the user’s activities in the group
schedule are hidden if the user chooses to do so

Procedure of testing

steps

1. Check if this user’s activities’ names are censored for
everyone in the group when the user enables this
option.

Expected results
When the user enables this option, their activity names must
be hidden from everyone in that group.

Priority/Severity Major

Date Tested and Test

Result
N/A

23

Test ID TC#7

Test Type/Category Functional, Safety

Title
Check if the user can see the messages of a user that they
have blocked

Procedure of testing

steps

1. Check if blocking a user hides the already-existing
messages.

2. Check if blocking a user prevents the blocked user
from messaging this user.

3. Check if blocking a user prevents this user from
receiving the blocked user’s messages.

Expected results
Already-existing messages should stay for both sides. The
blocked user should be able to send messages, but the
receiver should not see any of the new messages.

Priority/Severity Major

Date Tested and Test

Result
N/A

Test ID TC#8

Test Type/Category Functional, Usability

Title
The user should receive a notification when they are
assigned an item to bring to the event

Procedure of testing

steps
1. Check if the user is notified in Perfent when they are

assigned an item to bring to the event.

Expected results
The user should be notified when they are assigned an item
to bring to the event.

Priority/Severity Minor

24

Date Tested and Test

Result
N/A

Test ID TC#9

Test Type/Category Functional

Title
The user should not be able to agree to an event more than
once

Procedure of testing

steps
1. Check if the user can agree to an event twice.

Expected results
The user should only be able to agree to an event at most
once.

Priority/Severity Minor

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#10

Test Type/Category Functional, Usability

Title
Check if recommendations are accurate to the constraints

given by the group.

Procedure of testing

steps

1. Determine a set of constraints to be changed.
2. In the test group, change these constraints.
3. Test if the recommendations are accurate to given

constraints.

Expected results The recommendations are accurate to given constraints.

25

Priority/Severity Major

Date Tested and Test

Result
19.05.2023 / Passed

Test ID TC#11

Test Type/Category Functional, Usability

Title
Check if the recommender returns the top-matching event
recommendations to the users.

Procedure of testing

steps

1. In the test group, request the recommendations.
2. Compare the top recommendations from the database

with responded recommendations.
3. Check if they are equal.

Expected results
Top responded recommendations should be the same as top
scored recommendations in the database.

Priority/Severity Major

Date Tested and Test

Result
19.05.2023 / Passed

Test ID TC#12

Test Type/Category Functional, Usability

Title
Check if proposed events are shown to the group at the

proposed events section.

Procedure of testing

steps

1. In the test group, a test group member proposes an
event to the group.

2. Login to other group members’ accounts in the group.
3. Check if that proposed event can be seen in the

proposed events section of other members.

26

Expected results
Proposed events by a group member are visible by other
group members.

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#13

Test Type/Category Functional, Usability

Title
Check if sorting and filtering options at event browsing are

working correctly.

Procedure of testing

steps

1. Determine a set of filters and sort options.
2. Choose a subset of them at each test stage.
3. Check if the chosen subset of them can accurately

manipulate the shown events.

Expected results
All sort and filter options are accurately manipulating the
events.

Priority/Severity Major

Date Tested and Test

Result
 18.05.2023 / Partially Passed

Test ID TC#14

Test Type/Category Functional, Usability

Title
Check if any change on the group schedule is shown to other
users in the group.

Procedure of testing
1. In the test group, login with a test group member and

make some changes in the schedule.

27

steps 2. Login with other group members.
3. Check if the first user’s changes are visible for the

other group members.

Expected results
Any change on the group schedule is visible to other group
members.

Priority/Severity Major

Date Tested and Test

Result
19.05.2023 / Passed

Test ID TC#15

Test Type/Category Functional

Title Check if the user can rate an event more than once

Procedure of testing

steps
1. Check if the user can rate the same event twice.

Expected results The second rating should overwrite the first one.

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#16

Test Type/Category Functional, Usability

28

Title
The recommendation algorithm should not consider the user
if the user marked a period of time as “not available”

Procedure of testing

steps

1. Check if the recommendation algorithm recommends
an event from the unavailable period when there are
at least two other group members who have this
period as available.

Expected results
The algorithm should disregard the unavailable user and
make recommendations for other available users.

Priority/Severity Major

Date Tested and Test

Result
N/A

Test ID TC#17

Test Type/Category Functional, Usability

Title
The different view options when browsing events should not
change the order the events are presented

Procedure of testing

steps

1. Check if the order of the events change when the view
option is changed from “row view” to “list view” while
keeping the sorting and filtering options untouched.

2. For every other view option that might be added later,
check if the event order is the same as “list view”
while keeping the sorting and filtering options
untouched.

Expected results
The event order should not change with the same sorting
and filtering options.

Priority/Severity Minor

Date Tested and Test

Result
19.05.2023 / Passed

29

Test ID TC#18

Test Type/Category Functional

Title
Check if the user can be invited to a group that they are
already a part of

Procedure of testing

steps
1. Check if the group admin can send an invite to a

group member.

Expected results
After the attempt, the group admin should receive an error
message with a description.

Priority/Severity Minor

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#19

Test Type/Category Functional

Title
Check if the user can mark an event as “attended” before the
event start time

Procedure of testing

steps
1. Check if the user can mark an event as “attended”

before the event start time

Expected results
The user should receive an error message telling that the
event has not started yet.

Priority/Severity Minor

Date Tested and Test

Result
18.05.2023 / Passed

30

Test ID TC#20

Test Type/Category Functional

Title
The user should not be able to join to a deleted group using
an old invite

Procedure of testing

steps
1. Check if the user can accept an old invite from a

deleted group.

Expected results
The user should receive an error message telling that the
group does not exist.

Priority/Severity Minor

Date Tested and Test

Result
18.05.2023 / Failed

Test ID TC#21

Test Type/Category Functional, Usability

Title
If the only group admin leaves the group where there are
more than one regular members, the oldest member should
automatically become a group admin

Procedure of testing

steps

1. Consider a group consisting of the members A, B, C,
D where the members are sorted according to the
oldest to the newest and A is the only group admin.
Check if B becomes the only group admin when A
leaves the group.

2. Check if the group admin is chosen randomly if there
are multiple members with the exact oldest joining
date by repeating the case many times.

Expected results

In such a scenario, the oldest member should become the
only group admin. If there are multiple members with the
same oldest joining date, the new admin should be chosen
randomly.

31

Priority/Severity Major

Date Tested and Test

Result
19.05.2023 / Passed

Test ID TC#22

Test Type/Category Functional

Title
Check if the user notifications are unmuted after the duration
specified by the user

Procedure of testing

steps
1. Check if a user who mutes their notifications for 24

hours can be notified at the 25th hour.

Expected results
The user should be notified for the new notifications after the
specified unmute period ends.

Priority/Severity Minor

Date Tested and Test

Result
N/A

Test ID TC#23

Test Type/Category Functional, Usability

Title
Check if the date inputs are received by date picker UI
elements

Procedure of testing

steps
1. For each date input in Perfent, check if the date is

submitted using a date picker.

32

Expected results
All dates should be submitted using a date picker unless
there is an additional constraint that prevents this.

Priority/Severity Minor

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#24

Test Type/Category Functional

Title
Check if the new users can provide invalid emails when
signing up

Procedure of testing

steps
1. Check if invalid emails such as “@.com” can be

submitted as email addresses in the sign up screen.

Expected results
The input should only accept valid emails and it should
inform the user accordingly.

Priority/Severity Major

Date Tested and Test

Result
19.05.2023 / Passed

Test ID TC#25

Test Type/Category Functional, Safety, Usability

Title
If a user opts out of the user matching feature they are not

shown to anyone and no one is recommended to them .

Procedure of testing
1. Unmark the option that opts in the test user to user

matching feature.

33

steps 2. Check if that user is recommended to any other users
by checking the section that recommends users to a
user.

3. Check if other test users’ are recommended to the test
user that has opted out of the user matching feature.

Expected results
When the user opt out of the user matching feature they are
not shown to anyone and no one is shown to them.

Priority/Severity Major

Date Tested and Test

Result
N/A

Test ID TC#26

Test Type/Category Functional, Safety

Title

Anonymously post photos or videos to the event do not

contain any user information that gives the user’s identity to

other users.

Procedure of testing

steps

1. First test user posts photo and a video to the event
feed.

2. Login to the second test user and get the response
that contains the data for the photo and video sent by
the first user.

3. Check if that block of the response contains any user
information that belongs to the first user.

Expected results
Response that contains the video and photo information from
the first user, does not contain any personal user
information.

Priority/Severity Major

Date Tested and Test

Result
N/A

34

Test ID TC#27

Test Type/Category Functional, Usability

Title
Buttons in the application, in a short span of time can only be

clicked once (no bounce effect)

Procedure of testing

steps

1. For any button in the app, click the button twice in a
short span of time. (Ex: 500 ms)

2. Check if the effect of the button applied twice or once.

Expected results
All of the buttons apply its effect only once when it is clicked
more than one time in a short span of time.

Priority/Severity Minor

Date Tested and Test

Result
19.05.2023 / Passed

Test ID TC#28

Test Type/Category Functional, Usability

Title Text fields in the application trims the entered texts

Procedure of testing

steps

1. For any text field in the app, enter a random text in the
text field with spaces present at the start and end of
the text.

2. Get the value of the text field after a value is written.
3. Check if there are any empty spaces present in the

fetched value.

Expected results
All text fields fetched values should be texts that are trimmed
and do not contain any empty spaces at the beginning or
end.

Priority/Severity Minor

Date Tested and Test 18.05.2023 / Passed

35

Result

Test ID TC#29

Test Type/Category Functional, Usability

Title
Wishlist notifications are sent in the specified time before the

event.

Procedure of testing

steps

1. Add events to the wishlist of the tested user.
2. Change the events time to a date that is close to the

current date.
3. Check if any notifications arrive to the tested user.

Expected results
Notification should arrive to the tested user since an event in
their wishlist is close to its starting date.

Priority/Severity Minor

Date Tested and Test

Result
N/A

Test ID TC#30

Test Type/Category Functional, Usability

Title
All operations give feedback to the user whether it is an error

message or success message.

Procedure of testing

steps

1. For any operation in the application, do the operation
in an intended and unproblematic way.

2. Check if a success message is shown.
3. Do the operation in a way that is not expected or

problematic (Ex: try empty string for password)
4. Check if the error message shows up.

Expected results For any operation an error or success message shows up.

36

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Partially Passed

Test ID TC#31

Test Type/Category Functional, Safety

Title
Check if users can only report the users they have joined

events with

Procedure of testing

steps

1. Using the tested user, open the random user’s section
where they can be reported.

2. Do the operation that reports the randomly chosen
user.

Expected results
Application should not let them report a user they have not
joined events with.

Priority/Severity Minor

Date Tested and Test

Result
N/A

Test ID TC#32

Test Type/Category Functional, Usability

Title
An event or an artist should be added to the wishlist of the

user when they do the operation to add them.

Procedure of testing

steps

1. Using the test user, open the section where one can
add their wanted event or artist to their wishlist.

2. Click the button to add them into their wishlist.
3. Check the wishlist of the tested user to see if the

chosen event or artist added to the wishlist.

37

Expected results The event or the artist should appear in their wishlist.

Priority/Severity Minor

Date Tested and Test

Result
17.05.2023 / Passed

Test ID TC#33

Test Type/Category Functional, Usability

Title Users can only use one vote in event votings.

Procedure of testing

steps

1. Create a voting activity for an event for the tested
group.

2. Login to a tested group member’s account and try to
vote more than once by clicking the vote button.

Expected results Vote operation is not performed more than once.

Priority/Severity Minor

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#34

Test Type/Category Functional, Usability

Title
Check if the standard expected group invite procedure is

working correctly

Procedure of testing
1. Using the tested group admin, invite a tested non

group member user to the group.

38

steps 2. Login to the tested user and view the section of the
application where invitations arrive.

3. Accept the invitation.
4. Login to a member of the group.
5. Check from the list of users if the invited user is now

part of the group.
Or

6. Reject the invitation.
7. Login to a member of the group.
8. Check from the list of users if the invited user is not

added to the group.

Expected results

Invitation must be sent when the group admin sends the
invitation. Invitation must be viewed in the invitation list of the
invited user. If accepted, the invited user must be added to
the group. If rejected, the invited user must not be added to
the group.

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#35

Test Type/Category Functional, Usability

Title
Check if the group event recommendation notifications are

sent periodically and not missing.

Procedure of testing

steps

1. Using the tested group member, view the
recommended event notification.

2. Increment the time of the system by the notification
period T.

3. Check again if another event recommendation
notification is sent since the system time incremented.

Expected results Another notification is sent to the group member.

Priority/Severity Minor

Date Tested and Test 17.05.2023 / Passed

39

Result

Test ID TC#36

Test Type/Category Functional, Security, Usability

Title
Check if the standard expected login procedure is working

correctly.

Procedure of testing

steps

1. For the tested user, enter the correct login credentials
to the text fields.

2. Check when the login button is clicked, the application
lets the user login to their account.

3. Log out.
4. Enter incorrect login credentials to the text fields.
5. Check when the login button is clicked, the application

does not let the user into their account.

Expected results
If correct credentials are entered, the user is taken into their
account, otherwise they are not taken into their account.

Priority/Severity Critical

Date Tested and Test

Result
15.05.2023 / Passed

5.2 Non-functional Test Cases

Test ID TC#37

Test Type/Category Non-functional, Accessibility

Title
Check if the web site can be accessed and used correctly
from all popular browsers

Procedure of testing

steps

1. Check if Perfent can be accessed and used correctly
from Google Chrome.

2. Check if Perfent can be accessed and used correctly
from Safari.

3. Check if Perfent can be accessed and used correctly

40

from Edge.
4. Check if Perfent can be accessed and used correctly

from Firefox.
5. Check if Perfent can be accessed and used correctly

from Opera.

Expected results
Perfent should be accessed from each of these browsers
and it should behave in the same way.

Priority/Severity Minor

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#38

Test Type/Category Non-functional, Performance

Title
perfent.net should have an availability rate of at least 99%
during its lifetime

Procedure of testing

steps
1. Check that the (MTBF (mean time between failure)) /

(total lifetime so far) is greater than or equal to 99%.

Expected results
The availability rate (the formula in step 1) should be greater
than or equal to 99%.

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#39

Test Type/Category Non-functional

41

Title The web scraper should be run automatically once an hour

Procedure of testing

steps
1. Check if the script is run hourly on the server

automatically.

Expected results The web scraper should be run automatically once an hour

Priority/Severity Critical

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#40

Test Type/Category Non-functional

Title
The web scraper should not fetch events that already exist in
the database

Procedure of testing

steps

1. Check if any new event row is inserted after fetching
an identical event list that has already been fetched
and inserted before.

Expected results No new rows should be inserted.

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#41

42

Test Type/Category Non-functional

Title
The web scraper script must complete execution in 3
minutes

Procedure of testing

steps
1. Check if the execution exceeds 3 minutes.

Expected results The execution should not exceed 3 minutes.

Priority/Severity Minor

Date Tested and Test

Result
18.05.2023 / Failed (takes ~7 minutes)

Test ID TC#42

Test Type/Category Non-functional, Usability

Title Check if the text input fields accept Turkish characters

Procedure of testing

steps

1. For each text input field in Perfent, Check if the
following characters and their capital versions can be
inserted and submitted: ğ, ü, ş, ı, İ, ö, ç.

Expected results
The user should be able to insert and submit these
characters to text input fields unless there is a constraint that
prevents this.

Priority/Severity Minor

Date Tested and Test

Result
17.05.2023 / Passed

43

Test ID TC#43

Test Type/Category Non-functional, Usability, Performance

Title
User’s clickstream data is saved to the database and not

lost.

Procedure of testing

steps

1. Open the events page.
2. Click and hover over events systematically according

to the predefined clicking plan.
3. Check if the occurred clicking activity is written to the

database.

Expected results
Occurred click and hover activity should be written to the
database in some structural way.

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#44

Test Type/Category Non-functional, Security

Title Check if session cookies are non-functional after 1 hour.

Procedure of testing

steps

1. Login to the tested user’s account entering the correct
credentials.

2. Set the time of the system to 1 hour later.
3. Check the cookies and their active status.

Expected results
Status should be inactive and session cookie should not let
the user do any more operations in their account.

Priority/Severity Critical

Date Tested and Test

Result
18.05.2023 / Passed

44

Test ID TC#45

Test Type/Category Non-functional, Performance, Scalability

Title
Check if the server withstands the specified amount of

spammed requests.

Procedure of testing

steps

1. Open a load test tool.
2. Spam requests to an endpoint that does not require

authorization.
3. Check if the server is still operational and answering

requests.

Expected results
Server is operational unless an expected request threshold is
hit.

Priority/Severity Critical

Date Tested and Test

Result
17.05.2023 / Passed

Test ID TC#46

Test Type/Category Non-functional, Performance

Title Recommendations are accurate at 70% at lowest.

Procedure of testing

steps

1. Wait for the application to be used for a while or use
the application with a group of people. (A human
should use it)

2. Check if the result generated by the evaluation
metrics is above 70%.

Expected results Evaluation model gives accuracy of at least 70%.

Priority/Severity Major

45

Date Tested and Test

Result
N/A

Test ID TC#47

Test Type/Category Non-functional, Security

Title Passwords are hashed according to bcrypt2 standards

Procedure of testing

steps

1. For the tested user, fetch its password in the
database.

2. Compare the format of the password with bcrypt2
standards.

Expected results Password is hashed according to bcrypt2 standards.

Priority/Severity Critical

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#48

Test Type/Category Non-functional, Performance, Scalability

Title Any request should be responded under 1 second

Procedure of testing

steps

1. Start the timer.
2. Request to the endpoint that has the highest amount

of data when its request data amount and response
data amount is summed.

3. Stop the timer.
4. Check if the difference between times is under 1

seconds.

46

Expected results Difference is at most 1 second.

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Failed (1% failure rate - doesn’t exceed 3s)

Test ID TC#49

Test Type/Category Non-functional, Performance

Title
Each user’s recommendations are updated after they give an

explicit feedback in 1 hour.

Procedure of testing

steps

1. Store the user’s current recommendations.
2. The tested user rates an event or gives any other type

of explicit feedback.
3. Wait for 1 hour (it may be important here to wait

because of the high amounts of operations in creating
recommendations)

4. Compare the current recommendations with the
stored ones.

Expected results Compared recommendations should be different.

Priority/Severity Major

Date Tested and Test

Result
18.05.2023 / Passed

Test ID TC#50

Test Type/Category Non-functional, Security

47

Title
Check if the request sender receives an accurate error when

it requests a resource their role does not have access.

Procedure of testing

steps

1. Using the tested user, try to request an endpoint their
role does not have access to.

2. Check if the error message saying they do not have
access to that endpoint is sent as a response.

Expected results
An error message saying they do not have access to that
endpoint is sent as a response.

Priority/Severity Critical

Date Tested and Test

Result
18.05.2023 / Passed

6 Maintenance Plan and Details

All of our systems are currently working on the Amazon Web Services. AWS
provides powerful tools for us to monitor and get a good idea about the status
of the services they provide. For example we can observe the EC2 instance's
(where we run our virtual machine) CPU utilization (Figure 10), and incoming
traffic (Figure 11). We plan to use these types of tools which are present in all
AWS services to perform a good maintenance of the project.

Figure 10: CPU Utilization Graph

Figure 11: Network Traffic Graph

48

In places where we find our services lacking and insufficient for our goals we
can easily upgrade our services since AWS offers the capability to do so. For
example, through using the following user interface available in RDS (Figure
12) we can add additional space to our database and improve the
performance of our services.

Figure 12: Storage Allocation

7 Other Project Elements

7.1 Consideration of Various Factors in Engineering Design

In the development process of Perfent, our team had the mission to
have an easily maintainable and valuable product in the existing market. To
make our product more significant than others, we tried to consider different
aspects of the engineering design.

First of all, the main viewpoint of Perfent is the contribution to the social
life of humans. In the analysis stage of our application, we have considered
various user profiles and how they would benefit from this application.
Especially, considering the long lasting Covid-19 period, the social life of
people was significantly less active than it used to be. In addition to that,
scheduling events with friends has always been somewhat challenging. So to
help people to have a more active social life, the requirements of Perfent are
analyzed reflecting this social aspect and making social life the primary
concern of the application. This was also important in terms of health because
we believe social activities are significant contributors to the psychological
health of humans. After the quarantine period, we believe Perfent will help
people recover faster and increase their welfare.

 Secondly, we tried to fetch as many events as possible with Perfent.
Many events from different categories such as music, art, family, and shows

49

are fetched from the web with regular periods. With this variety, we first tried
to increase the availability for our users in terms of time and money because,
in Perfent, we request our users to provide their budget. Then we recommend
affordable events. Besides this economic perspective, we believe requesting
many events from different categories will also benefit event holders
financially. Their events will be advertised to the correct audience due to our
recommendation system and we think their customer rates will increase with
this approach. In addition to these, Perfent will guide users to be updated on
the events and this can potentially increase the number of cultural activities
they perform as well. Eventually, we believe this will help cultural development
as well.

 In terms of safety, Perfent needed to consider various points. First of
all, when the events are considered, we should show users events from
trusted sources. Otherwise, users could have been directed to fraudulent
websites. To avoid this, events are retrieved from a reliable source. Secondly,
all the user information regarding the login details or preferences needs to be
stored safely. For that, we utilized different security packages in the web
server of the application.

 Perfent is initially considered a local application specific to Turkey.
Because of that, its global effects would be a consideration for now. In the
future, if it fits the market in Turkey, it can be extended to other countries.

 When the given details are considered, the factors and their effects can
be summarized in the table below.

Factor Effect (1-10)

Social 10

Cultural 8

Economic 7

Safety 7

Welfare 4

Public Health 3

Global 0

50

Environmental 0

Table 1: The factors in engineering design and their effects on Perfent

7.2 Ethics and Professional Responsibilities

The schedule information provided by the users, or any other

confidential information is not shared with any third party company unless the

user agrees to share. Sensitive user information such as user passwords and

locations are stored securely. To achieve this, the data is encrypted before

they are saved to the database.

A positive working environment was needed for the team to work in

harmony. To achieve this, the developers respected each other, the work was

shared as evenly as possible, and the developers were transparent with their

progress during the weekly progress meetings.

7.3 Teamwork Details

7.3.1 Contributing and functioning effectively on the team

● Bora: Contributed in all reports, implementation, and brainstorming.

Actively attended all group meetings and suggested ideas. Took

responsibility for web scraper and web server components with Beste

in the implementation. Reviewed code when requested. Enabled

HTTPS. Helped generate synthetic data for testing purposes.

● Beste: She worked in the process of writing the reports and works

actively on the web scraper and web server components. In addition to

that, she developed certain pages at front end and helped in machine

learning parts as well.

● Faruk: Completed the required parts of the reports. Took and shared
responsibility without creating any problems. Expressed his strengths
and weaknesses to the team well to take the role that is the most
suitable. Reviewed other’s pull requests on the front-end.

● Elif: Collaborated with the team members for the reports. Worked on
several components for the frontend and contributed mostly on fetching
data from backend and displaying the data when needed. Also added
ui analytics integration for gathering user data for recommender
system.

51

● Çağrı: Worked in all reports, and implementation. Actively attended all
group meetings and suggested ideas. Worked on the recommendation
system, authentication and on cloud services.

7.3.2 Helping creating a collaborative and inclusive environment

● Bora: Valued each member’s opinions in the meetings. Always
suggested ideas in a non-assertive manner in order to encourage
brainstorming. Was flexible in terms of group meeting times when
someone could not make it to the fixed meeting time because every
member might have something valuable to add to the conversation.
Encouraged the use of tools like JIRA and GitHub to make
collaboration easier.

● Beste: In the development process of the web scraper and web server
components, she worked closely with Bora and Cagri and took their
ideas. In addition to that, whenever she made a development, she
used the version control system Git to create pull requests and take
review them so other developers could also view the updates in the
project.

● Faruk: Shared the efforts equally with Elif while designing the front-end.
Took feedback from teammates on the work that was done and
changed it accordingly. Tried to make sure the work is distributed
equally between the team members.

● Elif: Attended the meetings and shared ideas with team members.
Most of the time shared the workload with other members and worked
collaboratively on the recommender system and frontend of the project.
Take the opinions of the other team members’ into consideration and
meet their requests throughout the implementation process.

● Çağrı: Suggested ideas at group meetings and showed decent
contribution in the group meetings. Encouraged others to talk and voice
their opinions both at live group meetings and whatsapp group chat.
Talked and consulted to other group members when a problem
occurred.

7.3.3 Taking lead role and sharing leadership on the team

● Bora: Actively offered up ideas in subjects he is confident in.
Suggested/set up meetings before regular group meetings started.
Managed the use of JIRA issues. Encouraged code review tradition.
Shared leadership by letting other teammates be more vocal about
machine learning subjects since his machine learning knowledge is not
the best.

● Beste: She started the development of web scraper and web server
components. After the initiation, she continued the development with
other team members.

52

● Faruk: Took initiative while designing and developing the front-end part
of the project. Requested services from the team members that work
on the back-end. Communicated with others on which parts are lagging
behind and where help is needed. Participated and gave ideas in
discussions during meetings.

● Elif: Give ideas about the functional requirements of the project and the
implementation process. Managed the UI design of the application and
also took part in implementation.

● Çağrı: Usually managed the discussions and gave direction to
discussions in the live group meetings while also partaking in the
discussions.

7.3.4 Meeting objectives

● Bora: Met most of the objectives of the project. All of the reports were
completed successfully and on time. These were approved by the
course instructor and our supervisor. For the implementation
objectives, he was responsible for the web-server, web scraper, some
integration parts and the testing of the corresponding parts. The
scraper was handled well as a team. The web server could not be
completed 100%, yet it was mostly completed. The corresponding
integration objectives were handled well as well. Unfortunately, he
could not complete the verification & validation objectives well enough.
Only the amount necessary to deliver other parts were completed due
to the time constraints.

● Beste: She met most of the objectives in the project. She learned API
development with Spring and database design and implementation with
PostgreSQl and Hibernate. In addition to that, for web scraping and
recommendation system she developed new skills in Python. She
completed all her main goals in project plan which are implementation
of server and scraper. She took part in the integration of web server
and scraper and the integration of front end and web service. She
additionally helped other team members actively.

● Elif: Learned how to integrate external ui components and libraries to
the frontend design using React.js. Improved existing skills regarding
frontend and backend integration. Contributed recommendation system
for obtaining data.

● Faruk: During implementation used React-MUI library for the first time
to create front-end components. Implemented the connection between
front-end and back-end for some parts. Worked on reports to help the
team achieve success during both semesters.

● Çağrı: Completed the main goal of building a recommendation system.
Although, if there were more time there were plans to combine the
recommendation algorithms in a way that can be more effective. Also,
completed the main goal of building a cloud environment where Perfent

53

services can be hosted. Other than these two, there were other minor
objectives I have completed.

7.4 New Knowledge Acquired and Applied

First of all, team members learned how to use cloud systems. By using
AWS, we deployed our application. This helped us to learn how to
maintain and improve a real time application. For that, CI/CD pipeline
has been effectively used by our team.

Our team members developed themselves in different areas. The
members of the backend team learned the efficient design of database
and API whereas our frontend team improved themselves in user
friendly UI designs and implementing fast web applications. All of the
group members improved themselves on reading documentations and
adapting to new technologies. As a result, web technologies such as
Spring and React have been learned by the team. Lastly, some of the
team members developed their skills on data processing and machine
learning through the development of recommendation system.

8 Conclusion and Future Work

As of now Perfent is a web application that allows people to browse
events with their group using basic functionalities. To improve the
application the group’s aim is to perfect these functionalities before
adding new ones and explore new options. The possible improvements
are as follows:

Optimizing the recommender: In order to give better recommendations
the recommender needs more data from the users. This will only happen
when the application is more widely used. Therefore, we think that with
more users the recommender will get better and attract more users.

Launching a mobile application: For modern web applications such as
Perfent, a mobile counterpart is necessary for achieving wide usage.

Scraping events from more sites: Right now Perfent only uses events
that are posted on Biletix website. However, there are more sources that
can be used especially if events from other countries will be used.

Expanding to different countries: If success in the Turkish market is
achieved an expansion to other countries is inevitable.

9 References

[1] “Features,” Whatsapp. [Online]. Available:

https://www.whatsapp.com/features. [Accessed: 13-Nov-2022].

[2] “Calendar,” Google Workspace. [Online]. Available:

https://workspace.google.com/products/calendar/. [Accessed: 13-Nov-2022].

54

[3] “Where do websites store passwords?,” The JavaScript Diaries, 18-Nov-

2019. [Online]. Available: https://www.jsdiaries.com/where-do-websites-store-

passwords/. [Accessed: 17-Oct-2022].

[4] “Does page load time really affect bounce rate? - pingdom,” pingdom.com.

[Online]. Available: https://www.pingdom.com/blog/page-load-time-really-

affect-bounce-rate/. [Accessed: 17-Oct-2022].

[5] J. Gaubys, “What percentage of internet traffic is mobile? [Sep '22 UPD],”

Oberlo. [Online]. Available: https://www.oberlo.com/statistics/mobile-internet-

traffic#:~:text=As%20of%20August%202022%2C%2053.74,46.26%20percent

%20coming%20from%20desktops. [Accessed: 17-Oct-2022].

